
The ChessBrain Project
A Global Effort To Build The World's Largest Chess SuperComputer

Carlos Justiniano and Colin M. Frayn
Newbury Park, USA / Cambridge, UK

Published in the June 2003 issue of the
Journal of the International Computer Games Association (ICGA)

Vol. 26, No. 2, pp. 132-138.

ABSTRACT

This article examines a distributed computing project that
uses the processing power of Internet-connected machines to
construct a single chess-playing supercomputer.

1. INTRODUCTION

In the past decade, researchers began investigating how to
link commodity-off-the-shelf (COTS) computers to create
less expensive supercomputers. In the summer of 1994,
Thomas Sterling and Don Becker had a problem they wanted
to solve; they decided to use commonly available
components to build a 16-computer cluster that functioned as
a single machine. They named their machine Beowulf, and it
quickly became a success within NASA, and the academic
and research communities (Beowulf, 1994). The Beowulf
project demonstrated the viability of using COTS computers
to solve computational problems. Over time, Beowulf
clusters were built using hundreds of machines.

The rapid growth of the Internet brought about several
opportunities to extend the Beowulf concept to include
machines distributed throughout the Internet. As computers
became faster and cheaper, many spent nearly all of their idle
time waiting for something to happen. The idea of salvaging
unused CPU time became synonymous with distributed
computing. This attracted more than academic attention
when a data security company, RSA Security Inc.
(http://www.rsasecurity.com/) began offering cash prizes for
cracking encryption schemes.

In the spring of 1997, a group of individuals began preparing
to compete in a challenge to solve RSA’s 56-bit encryption
algorithm. The group set out to develop network servers that
could coordinate the remote machines. The task involved
potentially testing 72 quadrillion encryption keys by
distributing the work of testing to as many computers as
possible. Given time, brute-force attempts can be used to
crack encryption schemes. Hence, the value of any
encryption scheme is directly proportionate to the time
required to break it. At the time, the US government

maintained that a 56-bit encryption key offered sufficient
security for business. The traditional methods of solving this
sort of problem involved using supercomputers. As summer
approached the group gained exposure via the Internet and
became formally known as distributed.net. By October,
distributed.net aided by thousands of contributors discovered
the correct key to solve the 56-bit challenge, which revealed
RSA’s blunt statement: “The unknown message is: It's time
to move to a longer key length”.

The distributed.net project proved the viability of massively
distributed computations. In addition, distributed.net
demonstrated that using the contributed machines of
unknown individuals over a public network could provide
viable alternatives to centralized supercomputers and
clusters. The result gained immediate attention from
technical publications, and on October 24th the New York
Times (1997) published an article “Cracked Code Reveals
Security Limits” on the achievement.

The most widely publicized distributed computing project
began in 1998, when a group of researchers at the University
of California in Berkeley launched the SETI@home project.
Millions of people contributed the use of their machines to
the SETI@home (The Search for Extraterrestrial
Intelligence) project. Researcher David Anderson wrote that
at the time the fastest supercomputer was the ASCI White
built by IBM for the U.S. Department of Energy. The
machine cost US $110 million, weighed 106 tons and offered
a peak performance of 12.3 TFLOPS (Oram, 1998).
Anderson wrote that SETI@home was faster than the ASCI
White at less than 1% of the cost. The reason for the
remarkable cost difference stemmed from distributing the
cost of computation. Each remote contributor bares the
burden of operating a compute node – including the cost of
electricity and any necessary upgrades. If the SETI@home
project was faced with buying the time on a supercomputer
the project might not exist. Soon more distributed computing
projects were formed. Each, seeking to tap the vast and
growing seas of underutilized computing resources
throughout the Internet.

For many people, having the opportunity to play a small role
in a potentially significant achievement outweighs the
personal costs of participation. Still, conventional wisdom
might dictate that most personal computer users would
demand to be paid for their contributions. After all, people
who allow the use of their equipment have to cover the costs
of electricity and in many cases, costly Internet connections.
In a stroke of genus, the SETI@home project packaged their
remote client software as a screensaver. Offering users a
screensaver application had several key advantages.

1. The very thought of a screensaver seems innocent,
familiar, and non-intrusive.

2. People already know that screensavers only start
when they do not use their computer, and it does not
interfere with their use of the machine.

3. Many people like to show off their screensavers
(rather than simply turn off their monitors) and so,
screensavers are good advertising tools. A great many
people learned about SETI@home by seeing it run on a
friend’s computer. This added an automatic and visual
component to the “word of mouth” marketing.

Today, SETI@home has had over three million participants.
Other projects have followed in their footsteps. As we write,
the Google Web Directory (2003) lists 87 distributed
computing projects. With goals ranging from biology,
mathematics, physics, and even the fight against bio
terrorism, there seems to be a project for everyone. In recent
news a Hong Kong based software company claimed that its
distributed computing software, with the help of Internet
based contributors, can predict the spread of the SARS virus
(Lui, 2003).

Distributed computing technologies such as distributed
computation, file sharing, and other P2P collaboration tools
are poised to impact our social and technological evolution.
The good news for researchers is that the masses are all too
willing to participate in exciting and new research projects!

2. CHESSBRAIN

The ChessBrain project was created in the summer of 2001
to explore distributed computation and the game of Chess.
Inspired by the pioneering work at Distributed.net and
SETI@home, we set out to construct a massive chess-
playing computer by using hundreds of Internet-connected
machines.

During the first six months of the project, we focused
exclusively on creating the two essential components of
distributed computing software, the server and the client.

We created a custom server application, the SuperNode
Server, to handle the creation and distribution of work to
remote client machines across the Internet. The SuperNode
itself consists of two major components, a network server
application and a chess-playing component. The chess and
server modules work independently and communicate with
one another using operating system pipes. We decoupled the
server application from the chess application to create a
loose binding to enable the replacement of the core game
component within the SuperNode machine.

The SuperNode server contains a BOT (software robot)
called Shannon (in homage to Claude Shannon). Shannon
communicates with Internet-based game servers and
understands commands that allow it to log on and off of a
game server and, accept, initiate, and resume games.
Shannon relays game state information to the SuperNode
server, which in turn communicates with the chess
component to begin processing and work unit distribution.

Next, we worked on the remote client software, which we
named the PeerNode. We chose the name “PeerNode”
because, like the SuperNode, the PeerNode is actually a
server application itself, albeit scaled down, and fully
capable of communicating with other peers. At present,
PeerNodes do not communicate with other PeerNodes;
however, this powerful feature has far reaching possibilities
in the future. Thus, the PeerNode is a client of the
SuperNode, but a server in its own right. Software that
behaves like a client and server is common among Peer-to-
Peer applications. A good example is an Instant Messaging
application, which communicate with a central server and is
able to establish peer connections with one or more IM
buddies. Another example is the file sharing applications,
which allow users to traverse a network looking for files,
which are ultimately transferred from a single machine to
another machine via a Peer-to-Peer connection.

Each PeerNode client includes a communication component
(scaled down server), which receives the work units and later
transmits the results, and a chess-engine component, which
completes assigned work units. We will explore the
relationship with the SuperNode and PeerNodes in Section 3.

From a high-level view, the SuperNode works with hundreds
of PeerNodes to play chess on a game server (see Figure 1).
Individual members on a game server are able to play against
ChessBrain, while many other members can observe the
active game. ChessBrain can only play one game at a time,
but does so using hundreds (and someday thousands) of
machines.

Figure 1: The Structure of ChessBrain.

Once the software was complete, we deployed two Pentium
III 1 GHz machines to high-speed networks, one in southern
California on a T1 connection, and one in northern
California on T3 connection. Network hosting was
generously provided by two long standing ChessBrain
contributors, Walt Howard (HackerWhacker.com) and Gavin
M. Roy (bteg.net).

After a few days of testing we released multiple versions of
the PeerNode Client for use on machines running Microsoft
Windows, Linux, Apple MacOSX and FreeBSD. Soon
hundreds of people downloaded the software and enabled
their machines to begin participating. The sudden surge of
interest surprised us and caused a significant setback in our
development efforts, as the project provided support to
hundreds of people. Many had questions regarding the
project, some wanted to help, and many offered useful
feedback.

In October our efforts moved into high gear. We focused on
preparing ChessBrain to play its first complete game of
chess. On Tuesday, December 17th 2002 ChessBrain played
its first distributed game of Chess. ChessBrain becomes the
first distributed computation project to play games online
using hundreds of computers throughout the Internet.

2.1 Project goals

ChessBrain was created with the initial goal of exploring
distributed chess computation. Over time, other goals
surfaced, introducing larger, more ambitious opportunities.
We wanted ChessBrain to become a prototype for future
distributed game projects. From a software development
perspective, ChessBrain was constructed to allow its game-
playing capabilities to be easily replaced. We realized that as
the project gained exposure others would become interested
in participating by offering their own ideas, and we wanted
to ensure that the software infrastructure was geared to
accept new game-playing components. In addition, the
project’s source code was structured to help make other

distributed game projects possible. We would love to see a
massively distributed Go project on the Internet someday.

Prior to starting the project we saw significant challenges in
distributed game computation, and recognized that some
regard such efforts as an exercise in futility. However, we
also recognized that history is replete with examples where
common belief has done little more than stifle innovation.
Thirteenth century mystic poet Jelaluddin Rumi wrote: “Out
beyond ideas of wrongdoing and rightdoing, there is a field.
I'll meet you there.” The field where we meet is the single
largest man-made structure ever created, a global planetary
network called the Internet. We are confident that challenges
may be overcome through open collaboration. While
developing ChessBrain a few major sub goals became clear,
and can be characterized as Autonomous, Secure, Stable,
Scalable, and Free.

2.1.1 Autonomous

Once the ChessBrain network could play, it would have to
do so without human intervention. The goal was to see
ChessBrain play on ICC-style game servers with an
emphasis on the Free Internet Chess Server
(http://www.freechess.org).

2.1.2 Secure, Stable, and Scalable

One of the most important challenges involved making
ChessBrain secure to prevent malicious users from
compromising the network and ultimately the accuracy of
play. An early attempt involved the use of the Blowfish
encryption algorithm. Blowfish proved not to be endian
friendly, forcing us to consider an endian neutral algorithm.
This led to the use of the Advanced Encryption Standard
(AES-Rijndael, 200X). The ChessBrain SuperNode was
developed as a multithreaded current connection server using
techniques such as connection pooling and caching. This
design makes the server scalable on multi-processor
machines and portable to a number of platforms.

Perhaps one of the biggest issues facing distributed
computing projects is how to manage effectively the network
bandwidth. Bandwidth utilization can range from hundreds
of dollars per month to several thousand for highly
successful projects. To address this issue a strict limit was
established to restrict the size of our data transmission. In
addition we employed data compression using the patent free
ZLib data compression algorithm (Zlib, 200X). The use of
both compression and encryption renders the data
unintelligible to network intrusion tools such as network
diagnostic (sniffers) software.

2.1.3 Free

By free, we mean free. The ChessBrain project is both non-
profit and noncommercial. The project is currently supported
by hundreds of contributors who donate their time and
resources. In order to help ensure ChessBrain’s future we are
preparing to release it as an open source project. We hope to
see a great many more people take interest in exploring
distributed computation using games. Once the project is
freely and easily accessible we see no reason why it could
not be adapted for use in machine-learning experiments
involving a massive network of readily available machines.

3. HOW CHESSBRAIN WORKS

Chess offers tremendously difficult problems to solve, but
lends itself conveniently to the concept of distributed
computing. Human players, in order to analyze a position
properly, must test many of the available moves in turn and
ascertain which of these moves leads to the best possible end
result. A computer uses a remarkably similar algorithm. The
extension of this problem to parallel computing is evident:
while one computer analyzes one move, another could
equally well be analyzing the next, as the results are not
interdependent. With additional computers all mutually
connected this could continue until one computer analyzes
the consequences of each of the possible moves from any
given position. With more computers working on the
problem the workload may be broken down still further and
the search can proceed even more quickly. Each computer
added to the task potentially makes this expanding network a
fraction stronger.

This, in all its simplicity, is the principle behind the
ChessBrain project. Though the theory seems simple, the
practical implementation poses a myriad of problems. Not
least of which is: how are many inter-linked computers
coordinated so that the game tree is searched as efficiently
and accurately as possible? This is addressed by introducing
a central server to which all of the other machines are
connected via the Internet. This central server, or
SuperNode, acts as a director, scheduling and distributing the
required jobs and sorting through the results when they are
returned.

The SuperNode is the central brain of ChessBrain. It is fully
capable of playing chess on its own when time is short, or
when it finds itself in recognized positions. However,
whenever the SuperNode reaches an unfamiliar position the
many PeerNodes are brought to bear on the problem. The
method by which this daunting workload is synchronized is
of fundamental importance and the responsibility all rests on
the central SuperNode code. ChessBrain uses an algorithm
loosely based on the APHID method developed by Mark
Brockington (1997) for asynchronous parallel game-tree
search (see Figure 2). Initially, the SuperNode performs a

shallow analysis of the unfamiliar position for a fixed time
limit. This gives an estimation of the potentially strong
moves, provides the data required for accurate ‘best-first’
move ordering and of course allows the SuperNode quickly
to pick out shallow checkmate lines which need not be
searched further.

Once this stage is complete, the SuperNode continues
analyzing the game tree, splitting up and prioritizing the
work to be done based on what it already knows. It performs
repeated shallow passes through the upper levels of the game
tree, down to two ply initially, and creates a prioritized list of
all the leaf nodes which must be searched in order to
complete an accurate evaluation. Each leaf node becomes a
work unit, consisting of a board position and a depth to
which that position should be analyzed by the assigned
PeerNode. The SuperNode ensures that these work units are
small enough to be completed quickly by a single computer.
This is achieved using a simple cost-prediction scheme based
on the previous computational complexity of the position to
be searched if the prediction is known; otherwise it is
achieved using an estimate based on the cost for the parent
position and an approximation to the branching complexity
at that node.

Figure 2: ChessBrain performing an asynchronous parallel
game-tree research.

More complex jobs are assigned to the PeerNodes deemed
most likely to return results in the shortest time; work units
lying in the principal variation are prioritized above those
further down the move list. All of the potential moves must
be distributed initially, many of which will become obsolete.
As work units are returned, the alpha-beta values for each
node are updated, and daughter nodes are deleted if
necessary, due to fail-high cuts. Deleted nodes are then
removed from the prioritized work list. Moreover, the
information is made available to the relevant PeerNodes to
abort their now-redundant task and seek further instructions.
If any individual work unit is deemed to have taken too long

to complete then it is automatically aborted and its reduced-
depth score is returned. The SuperNode estimates whether a
full-depth search was likely to have produced a score within
the alpha-beta window. If so, then the node is further
subdivided and re-distributed to the fastest PeerNodes
available. If not, then the incomplete result is accepted
without a full re-search.
Eventually, the SuperNode obtains an exact score of the root
node, and the algorithm returns the suggested best move and
the root score. If there is sufficient time left on the clock then
the analysis continues to the next ply, retaining as much
information from the previous iteration as possible and
splitting up the new work units as the increased search depth
makes their predicted search complexity too large to be
handled by any one single machine in the network.

There are many safety precautions taken with this approach.
Most importantly, the SuperNode sends out each work unit
to multiple PeerNodes in order to facilitate error detection.
This tactic also ensures that a result is returned as quickly as
possible: the more computers allocated to each work unit, the
less likely we are to encounter problems with PeerNodes
burdened by other duties, or crippled by network lag.
Naturally, some sort of balance must be struck between
sending out as many work units as possible and ensuring that
the results from those units are returned as quickly and as
reliably as possible. This sort of balance can only be
determined by extended periods of testing.

4. CONCLUSION

ChessBrain works - it now plays games of chess at around
International Master level. However, this is changing at an
exciting rate. With each round of testing, ChessBrain
improves. At each stage we introduce improved methods for
dividing up the computational workload, and for getting as
much performance as possible out of our rapidly growing
network of PeerNodes. On May 8th, 2003 ChessBrain used
531 machines while playing games of chess. We expect the
total number of machines to be more than double within the
next few months.

The ChessBrain project has over 800 hundred registered
members from 37 different countries around the world.
Many ChessBrain members contribute the use of one or
more machines, with several members contributing over 20
machines. On average, 300 to 400 computers are active
during any given game, and during the past few months the
network has processed over 20 trillion positions. We recently
completed testing ChessBrain on the Global Chess Servers at
GamesParlor.com and watched ChessBrain play for over 20
hours without human intervention.

To continue to the raise public awareness for the project we
are working to help stage a public exhibition involving an
attempt to secure a Guinness World Record for the largest

number of computers used to play a single game. Our hope is
that public exposure will help to attract talented researchers,
and that game researchers will consider adding distributed
computing to their future research plans.

5. ACKNOWLEDGEMENTS

The authors would like to thank the ChessBrain team for
their assistance in preparing this article. The ChessBrain
project welcomes your involvement, and we maintain an
open and public forum for discussion at:
http://www.ChessBrain.net.

To contact us visit: http://www.ChessBrain.net/friends.html

6. REFERENCES

AES-Rijndael (200X). National Institute of Standards and
Technology:
http://csrc.nist.gov/CryptoToolkit/aes/

Beowulf (1994). Beowulf Introduction - History – Overview.
http://Beowulf.gsfc.nasa.gov/overview.html

Brockington, M. (1997). Asynchronous Parallel Game-Tree
Search, Ph.D. Thesis. University of Alberta, Department of
Computing Science.

Google Web Directory (2003).
http://directory.google.com/Top/Computers/Computer_Scien
ce/Distributed_ Computing/ Projects/

Lui, J. (2003). Distributed computing to tackle SARS
patterns.
http://asia.cnet.com/newstech/
industry/0,39001143,39129226,00.htm

Oram, A. (ed.) (1998). Peer-to-Peer: Harnessing the Benefits
of a Disruptive
Technology. O’Reilly & Associates, Inc. pp.75.

The New York Times (1997). Cracked Code Reveals
Security Limits.
http://distributed.net/pressroom/ mirror/nytimes-10-24-
97.html

Zlib (200X). Zlib home page: http://www.gzip.org/zlib.

