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ABSTRACT

This  article  examines  a  distributed  computing  project  that
uses the processing power of Internet-connected machines to
construct a single chess-playing supercomputer.

1. INTRODUCTION

In the past decade, researchers began investigating how to
link  commodity-off-the-shelf  (COTS)  computers  to  create
less  expensive  supercomputers.  In  the  summer  of  1994,
Thomas Sterling and Don Becker had a problem they wanted
to  solve;  they  decided  to  use  commonly  available
components to build a 16-computer cluster that functioned as
a single machine. They named their machine Beowulf, and it
quickly became a success within NASA, and the academic
and  research  communities  (Beowulf,  1994).  The  Beowulf
project demonstrated the viability of using COTS computers
to  solve  computational  problems.  Over  time,  Beowulf
clusters were built using hundreds of machines.

The  rapid  growth  of  the  Internet  brought  about  several
opportunities  to  extend  the  Beowulf  concept  to  include
machines distributed throughout the Internet. As computers
became faster and cheaper, many spent nearly all of their idle
time waiting for something to happen. The idea of salvaging
unused  CPU  time  became  synonymous  with  distributed
computing.  This  attracted  more  than  academic  attention
when  a  data  security  company,  RSA  Security  Inc.
(http://www.rsasecurity.com/) began offering cash prizes for
cracking encryption schemes.

In the spring of 1997, a group of individuals began preparing
to compete in a challenge to solve RSA’s 56-bit encryption
algorithm. The group set out to develop network servers that
could  coordinate  the  remote  machines.  The  task  involved
potentially  testing  72  quadrillion  encryption  keys  by
distributing  the  work  of  testing  to  as  many  computers  as
possible.  Given  time,  brute-force  attempts  can  be  used  to
crack  encryption  schemes.  Hence,  the  value  of  any
encryption  scheme  is  directly  proportionate  to  the  time
required  to  break  it.  At  the  time,  the  US  government

maintained  that  a  56-bit  encryption  key  offered  sufficient
security for business. The traditional methods of solving this
sort of problem involved using supercomputers. As summer
approached the group gained exposure via the Internet and
became  formally  known  as  distributed.net.  By  October,
distributed.net aided by thousands of contributors discovered
the correct key to solve the 56-bit challenge, which revealed
RSA’s blunt statement: “The unknown message is: It's time
to move to a longer key length”.

The distributed.net project proved the viability of massively
distributed  computations.  In  addition,  distributed.net
demonstrated  that  using  the  contributed  machines  of
unknown individuals  over  a  public  network  could provide
viable  alternatives  to  centralized  supercomputers  and
clusters.  The  result  gained  immediate  attention  from
technical publications, and on October 24th the New York
Times (1997)  published an article “Cracked Code Reveals
Security Limits” on the achievement.

The  most  widely  publicized  distributed  computing  project
began in 1998, when a group of researchers at the University
of California in Berkeley launched the SETI@home project.
Millions of people contributed the use of their machines to
the  SETI@home  (The  Search  for  Extraterrestrial
Intelligence) project. Researcher David Anderson wrote that
at the time the fastest supercomputer was the ASCI White
built  by  IBM  for  the  U.S.  Department  of  Energy.  The
machine cost US $110 million, weighed 106 tons and offered
a  peak  performance  of  12.3  TFLOPS  (Oram,  1998).
Anderson wrote that SETI@home was faster than the ASCI
White  at  less  than  1%  of  the  cost.  The  reason  for  the
remarkable  cost  difference  stemmed  from  distributing  the
cost  of  computation.  Each  remote  contributor  bares  the
burden of operating a compute node – including the cost of
electricity and any necessary upgrades.  If  the SETI@home
project was faced with buying the time on a supercomputer
the project might not exist. Soon more distributed computing
projects  were  formed.  Each,  seeking  to  tap  the  vast  and
growing  seas  of  underutilized  computing  resources
throughout the Internet.

 



For many people, having the opportunity to play a small role
in  a  potentially  significant  achievement  outweighs  the
personal  costs  of  participation.  Still,  conventional  wisdom
might  dictate  that  most  personal  computer  users  would
demand to be paid for their contributions. After all, people
who allow the use of their equipment have to cover the costs
of electricity and in many cases, costly Internet connections.
In a stroke of genus, the SETI@home project packaged their
remote  client  software  as  a  screensaver.  Offering  users  a
screensaver application had several key advantages.

1. The very thought of a screensaver seems innocent,
familiar, and non-intrusive.

2.  People  already  know  that  screensavers  only  start
when they do not use their computer, and it does not
interfere with their use of the machine.

3.  Many  people  like  to  show  off  their  screensavers
(rather  than  simply  turn  off  their  monitors)  and  so,
screensavers are good advertising tools. A great many
people learned about SETI@home by seeing it run on a
friend’s computer. This added an automatic and visual
component to the “word of mouth” marketing.

Today, SETI@home has had over three million participants.
Other projects have followed in their footsteps. As we write,
the  Google  Web  Directory  (2003)  lists  87  distributed
computing  projects.  With  goals  ranging  from  biology,
mathematics,  physics,  and  even  the  fight  against  bio
terrorism, there seems to be a project for everyone. In recent
news a Hong Kong based software company claimed that its
distributed  computing  software,  with  the  help  of  Internet
based contributors, can predict the spread of the SARS virus
(Lui, 2003).

Distributed  computing  technologies  such  as  distributed
computation, file sharing, and other P2P collaboration tools
are poised to impact our social and technological evolution.
The good news for researchers is that the masses are all too
willing to participate in exciting and new research projects!

2. CHESSBRAIN

The ChessBrain project was created in the summer of 2001
to explore distributed computation and the game of Chess.
Inspired  by  the  pioneering  work  at  Distributed.net  and
SETI@home,  we  set  out  to  construct  a  massive  chess-
playing computer  by using hundreds of  Internet-connected
machines.

During  the  first  six  months  of  the  project,  we  focused
exclusively  on  creating  the  two  essential  components  of
distributed computing software, the server and the client.

We  created  a  custom  server  application,  the  SuperNode
Server,  to  handle  the  creation  and  distribution  of  work  to
remote client machines across the Internet. The SuperNode
itself  consists  of  two major  components,  a  network server
application and a chess-playing component.  The chess and
server modules work independently and communicate with
one another using operating system pipes. We decoupled the
server  application  from  the  chess  application  to  create  a
loose binding  to enable the replacement  of  the core  game
component within the SuperNode machine.

The  SuperNode  server  contains  a  BOT  (software  robot)
called  Shannon  (in  homage  to  Claude Shannon).  Shannon
communicates  with  Internet-based  game  servers  and
understands commands that allow it to log on and off of a
game  server  and,  accept,  initiate,  and  resume  games.
Shannon  relays  game  state  information  to  the  SuperNode
server,  which  in  turn  communicates  with  the  chess
component to begin processing and work unit distribution.

Next, we worked on the remote client software, which we
named  the  PeerNode.  We  chose  the  name  “PeerNode”
because,  like  the  SuperNode,  the  PeerNode  is  actually  a
server  application  itself,  albeit  scaled  down,  and  fully
capable  of  communicating  with  other  peers.  At  present,
PeerNodes  do  not  communicate  with  other  PeerNodes;
however, this powerful feature has far reaching possibilities
in  the  future.  Thus,  the  PeerNode  is  a  client  of  the
SuperNode,  but  a  server  in  its  own  right.  Software  that
behaves like a client and server is common among Peer-to-
Peer applications. A good example is an Instant Messaging
application, which communicate with a central server and is
able  to  establish  peer  connections  with  one  or  more  IM
buddies.  Another  example  is  the  file  sharing  applications,
which allow users to  traverse a network looking for  files,
which are ultimately transferred from a single  machine to
another machine via a Peer-to-Peer connection.

Each PeerNode client includes a communication component
(scaled down server), which receives the work units and later
transmits the results, and a chess-engine component, which
completes  assigned  work  units.  We  will  explore  the
relationship with the SuperNode and PeerNodes in Section 3.

From a high-level view, the SuperNode works with hundreds
of PeerNodes to play chess on a game server (see Figure 1).
Individual members on a game server are able to play against
ChessBrain,  while  many  other  members  can  observe  the
active game. ChessBrain can only play one game at a time,
but  does  so  using  hundreds  (and  someday  thousands)  of
machines.

 



Figure 1: The Structure of ChessBrain.

Once the software was complete, we deployed two Pentium
III 1 GHz machines to high-speed networks, one in southern
California  on  a  T1  connection,  and  one  in  northern
California  on  T3  connection.  Network  hosting  was
generously  provided  by  two  long  standing  ChessBrain
contributors, Walt Howard (HackerWhacker.com) and Gavin
M. Roy (bteg.net).

After a few days of testing we released multiple versions of
the PeerNode Client for use on machines running Microsoft
Windows,  Linux,  Apple  MacOSX  and  FreeBSD.  Soon
hundreds  of  people  downloaded  the  software  and  enabled
their machines to begin participating. The sudden surge of
interest surprised us and caused a significant setback in our
development  efforts,  as  the  project  provided  support  to
hundreds  of  people.  Many  had  questions  regarding  the
project,  some  wanted  to  help,  and  many  offered  useful
feedback.

In October our efforts moved into high gear. We focused on
preparing  ChessBrain  to  play  its  first  complete  game  of
chess. On Tuesday, December 17th 2002 ChessBrain played
its first distributed game of Chess. ChessBrain becomes the
first  distributed  computation  project  to  play  games  online
using hundreds of computers throughout the Internet.

2.1 Project goals

ChessBrain  was  created  with  the  initial  goal  of  exploring
distributed  chess  computation.  Over  time,  other  goals
surfaced,  introducing larger,  more ambitious opportunities.
We wanted  ChessBrain  to  become  a  prototype  for  future
distributed  game  projects.  From  a  software  development
perspective, ChessBrain was constructed to allow its game-
playing capabilities to be easily replaced. We realized that as
the project gained exposure others would become interested
in participating by offering their own ideas, and we wanted
to  ensure  that  the  software  infrastructure  was  geared  to
accept  new  game-playing  components.  In  addition,  the
project’s  source  code  was  structured  to  help  make  other

distributed game projects possible. We would love to see a
massively distributed Go project on the Internet someday.

Prior to starting the project we saw significant challenges in
distributed  game  computation,  and  recognized  that  some
regard such efforts as an exercise in futility. However,  we
also recognized that history is replete with examples where
common belief has done little more than stifle innovation.
Thirteenth century mystic poet Jelaluddin Rumi wrote: “Out
beyond ideas of wrongdoing and rightdoing, there is a field.
I'll meet you there.” The field where we meet is the single
largest man-made structure ever created, a global planetary
network called the Internet. We are confident that challenges
may  be  overcome  through  open  collaboration.  While
developing ChessBrain a few major sub goals became clear,
and  can  be  characterized  as  Autonomous,  Secure,  Stable,
Scalable, and Free.

2.1.1 Autonomous

Once the ChessBrain network could play, it would have to
do  so  without  human  intervention.  The  goal  was  to  see
ChessBrain  play  on  ICC-style  game  servers  with  an
emphasis  on  the  Free  Internet  Chess  Server
(http://www.freechess.org).

2.1.2 Secure, Stable, and Scalable

One  of  the  most  important  challenges  involved  making
ChessBrain  secure  to  prevent  malicious  users  from
compromising  the  network and ultimately  the  accuracy  of
play.  An  early  attempt  involved  the  use  of  the  Blowfish
encryption  algorithm.  Blowfish  proved  not  to  be  endian
friendly, forcing us to consider an endian neutral algorithm.
This  led to  the  use  of  the  Advanced  Encryption  Standard
(AES-Rijndael,  200X).  The  ChessBrain  SuperNode  was
developed as a multithreaded current connection server using
techniques  such  as  connection  pooling  and  caching.  This
design  makes  the  server  scalable  on  multi-processor
machines and portable to a number of platforms.

Perhaps  one  of  the  biggest  issues  facing  distributed
computing projects is how to manage effectively the network
bandwidth.  Bandwidth utilization can range from hundreds
of  dollars  per  month  to  several  thousand  for  highly
successful  projects. To address this issue a strict limit was
established to restrict  the size of  our  data transmission.  In
addition we employed data compression using the patent free
ZLib data compression algorithm (Zlib, 200X). The use of
both  compression  and  encryption  renders  the  data
unintelligible  to  network  intrusion  tools  such  as  network
diagnostic (sniffers) software.

 



2.1.3 Free

By free, we mean free. The ChessBrain project is both non-
profit and noncommercial. The project is currently supported
by  hundreds  of  contributors  who  donate  their  time  and
resources. In order to help ensure ChessBrain’s future we are
preparing to release it as an open source project. We hope to
see  a  great  many  more  people  take  interest  in  exploring
distributed  computation  using  games.  Once  the  project  is
freely and easily accessible we see no reason why it could
not  be  adapted  for  use  in  machine-learning  experiments
involving a massive network of readily available machines.

3. HOW CHESSBRAIN WORKS

Chess offers tremendously difficult  problems to  solve,  but
lends  itself  conveniently  to  the  concept  of  distributed
computing.  Human players,  in  order  to analyze a position
properly, must test many of the available moves in turn and
ascertain which of these moves leads to the best possible end
result. A computer uses a remarkably similar algorithm. The
extension of this problem to parallel computing is evident:
while  one  computer  analyzes  one  move,  another  could
equally  well  be  analyzing  the  next,  as  the  results  are  not
interdependent.  With  additional  computers  all  mutually
connected this could continue until one computer analyzes
the consequences of each of  the possible moves from any
given  position.  With  more  computers  working  on  the
problem the workload may be broken down still further and
the search can proceed even more quickly. Each computer
added to the task potentially makes this expanding network a
fraction stronger.

This,  in  all  its  simplicity,  is  the  principle  behind  the
ChessBrain  project.  Though  the  theory  seems  simple,  the
practical  implementation  poses  a  myriad of  problems.  Not
least  of  which  is:  how  are  many  inter-linked  computers
coordinated so that the game tree is searched as efficiently
and accurately as possible? This is addressed by introducing
a  central  server  to  which  all  of  the  other  machines  are
connected  via  the  Internet.  This  central  server,  or
SuperNode, acts as a director, scheduling and distributing the
required jobs and sorting through the results when they are
returned.

The SuperNode is the central brain of ChessBrain. It is fully
capable of playing chess on its own when time is short, or
when  it  finds  itself  in  recognized  positions.  However,
whenever the SuperNode reaches an unfamiliar position the
many PeerNodes are brought to bear on the problem. The
method by which this daunting workload is synchronized is
of fundamental importance and the responsibility all rests on
the central SuperNode code.  ChessBrain uses an algorithm
loosely  based  on  the  APHID method  developed  by  Mark
Brockington  (1997)  for  asynchronous  parallel  game-tree
search (see Figure 2).  Initially,  the  SuperNode performs a

shallow analysis of the unfamiliar position for a fixed time
limit.  This  gives  an  estimation  of  the  potentially  strong
moves,  provides  the  data  required  for  accurate  ‘best-first’
move ordering and of course allows the SuperNode quickly
to  pick  out  shallow  checkmate  lines  which  need  not  be
searched further.

Once  this  stage  is  complete,  the  SuperNode  continues
analyzing  the  game  tree,  splitting  up  and  prioritizing  the
work to be done based on what it already knows. It performs
repeated shallow passes through the upper levels of the game
tree, down to two ply initially, and creates a prioritized list of
all  the  leaf  nodes  which  must  be  searched  in  order  to
complete an accurate evaluation. Each leaf node becomes a
work  unit,  consisting  of  a  board  position  and  a  depth  to
which  that  position  should  be  analyzed  by  the  assigned
PeerNode. The SuperNode ensures that these work units are
small enough to be completed quickly by a single computer.
This is achieved using a simple cost-prediction scheme based
on the previous computational complexity of the position to
be  searched  if  the  prediction  is  known;  otherwise  it  is
achieved using an estimate based on the cost for the parent
position and an approximation to the branching complexity
at that node.

Figure 2:  ChessBrain performing an asynchronous  parallel
game-tree research.

More complex jobs are assigned to the PeerNodes deemed
most likely to return results in the shortest time; work units
lying in  the principal  variation are prioritized above those
further down the move list. All of the potential moves must
be distributed initially, many of which will become obsolete.
As work units are returned, the alpha-beta values for each
node  are  updated,  and  daughter  nodes  are  deleted  if
necessary,  due  to  fail-high  cuts.  Deleted  nodes  are  then
removed  from  the  prioritized  work  list.  Moreover,  the
information is made available to the relevant PeerNodes to
abort their now-redundant task and seek further instructions.
If any individual work unit is deemed to have taken too long

 



to complete then it is automatically aborted and its reduced-
depth score is returned. The SuperNode estimates whether a
full-depth search was likely to have produced a score within
the  alpha-beta  window.  If  so,  then  the  node  is  further
subdivided  and  re-distributed  to  the  fastest  PeerNodes
available.  If  not,  then  the  incomplete  result  is  accepted
without a full re-search.
Eventually, the SuperNode obtains an exact score of the root
node, and the algorithm returns the suggested best move and
the root score. If there is sufficient time left on the clock then
the  analysis  continues  to  the  next  ply,  retaining  as  much
information  from  the  previous  iteration  as  possible  and
splitting up the new work units as the increased search depth
makes  their  predicted  search  complexity  too  large  to  be
handled by any one single machine in the network.

There are many safety precautions taken with this approach.
Most importantly, the SuperNode sends out each work unit
to multiple PeerNodes in order to facilitate error detection.
This tactic also ensures that a result is returned as quickly as
possible: the more computers allocated to each work unit, the
less  likely  we  are  to  encounter  problems with  PeerNodes
burdened  by  other  duties,  or  crippled  by  network  lag.
Naturally,  some  sort  of  balance  must  be  struck  between
sending out as many work units as possible and ensuring that
the results from those units are returned as quickly and as
reliably  as  possible.  This  sort  of  balance  can  only  be
determined by extended periods of testing.

4. CONCLUSION

ChessBrain works - it now plays games of chess at around
International Master level. However, this is changing at an
exciting  rate.  With  each  round  of  testing,  ChessBrain
improves. At each stage we introduce improved methods for
dividing up the computational workload, and for getting as
much performance as possible out  of  our  rapidly growing
network of PeerNodes. On May 8th, 2003 ChessBrain used
531 machines while playing games of chess. We expect the
total number of machines to be more than double within the
next few months.

The  ChessBrain  project  has  over  800  hundred  registered
members  from  37  different  countries  around  the  world.
Many  ChessBrain  members  contribute  the  use  of  one  or
more machines, with several members contributing over 20
machines.  On  average,  300  to  400  computers  are  active
during any given game, and during the past few months the
network has processed over 20 trillion positions. We recently
completed testing ChessBrain on the Global Chess Servers at
GamesParlor.com and watched ChessBrain play for over 20
hours without human intervention.

To continue to the raise public awareness for the project we
are working to help stage a public exhibition involving an
attempt to secure a Guinness World Record for the largest

number of computers used to play a single game. Our hope is
that public exposure will help to attract talented researchers,
and that game researchers will  consider  adding distributed
computing to their future research plans.
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