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Abstract—The ChessBrain project currently holds an official 
Guinness World Record for the largest number of computers 
used to play one single game of chess. In this paper, we cover 
the latest developments in the ChessBrain project, which now 
includes the use of a highly scalable, hierarchically distributed 
communications model. 

I. INTRODUCTION & BACKGROUND 
HE ChessBrain project was initially created to 
investigate the feasibility of massively distributed, 

inhomogeneous, speed-critical computation via the Internet.   
The game of chess lends itself extremely well to such an 
experiment by virtue of the innately parallel nature of game 
tree analysis, allowing many autonomous contributors to 
concurrently and independently evaluate segments of the 
game tree. With diminishing returns coming from increased 
search speed, we believe that distributed computation is a 
valuable avenue to pursue for all manner of substantial tree-
search problems. 
 
 ChessBrain is among the class of applications which 
leverage volunteered distributed computing resources to 
address the need for considerable computing power.  Earlier 
projects include the distributed.net (Prime number search) 
and the SETI@home project which is focused on the 
distributed analysis of radio signals. 
 

Unlike similar projects which are content to receive 
processed results within days and weeks, ChessBrain 
requires feedback in real-time due to the presence of an 
actual time bound game. We believe that ChessBrain is the 
first project of its kind to address many of the challenges 
posed by stringent time limits in distributed calculations – a 
nearly ubiquitous feature of game-playing situations.  

 
In the two years since ChessBrain played its first match, 

we have been working on a second generation framework 
into which we can host the same chess-playing AI structure, 
but which will enable us to make far better use of that same 

AI and will permit efficient access to a far wider range of 
contributors, including locally networked machines and 
dedicated compute clusters. 
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During the first demonstration match, the ChessBrain 

central server received work units from 2,070 machines in 
56 different countries. Far more machines attempted to 
connect, but were unable to do so due to our reliance on a 
single central server. Our primary goal for ChessBrain II 
was to address this critical issue in a way that allowed for far 
greater scalability and removed much of the communication 
related processing overhead that was present in earlier 
versions. 

 
As a result, we chose a hierarchical model, which we 

explain in detail in the following section. This model 
recursively distributes the workload thus freeing the central 
server from much of its prior time-consuming maintenance 
and communications management tasks. 

II. PARALLEL GAME TREE SEARCH 
 

We included the basic algorithms for parallel game tree 
search in our earlier papers[1,2,3], and they have been 
covered in detail in the literature.  The ChessBrain project’s 
core distributed search uses the APHID algorithm[4].  It 
implements an incremental, iterative deepening search, 
firstly locally on the server and then, after a certain fixed 
time, within the distribution loop.  During this latter phase, 
the top few ply of the search tree are analysed repeatedly 
with new leaf nodes being distributed for analysis as soon as 
they arise.  Information received from the distributed 
network is then incorporated into the search tree, with 
branches immediately being extended or pruned as 
necessary. 
 

Leaf nodes are distributed to PeerNodes as work units.  
These encode the current position to be analysed and the 
depth to which it should be searched.  Work units are 
distributed to the connected PeerNodes on a request basis, 
though they are also ranked in order of estimated complexity 
using intelligent extrapolation from their recorded 
complexity at previous, shallower depths.  In this way, the 
most complex work units can be distributed to the most 
powerful PeerNodes.  Work units that are estimated to be far 
too complex to be searched within a reasonable time are 
further subdivided by one ply, and the resulting, shallower 
child nodes are distributed instead.  This is illustrated in 
figure 1. 
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Fig. 1: Distributed chess tree search 

 
 

If a node in the parent tree returns a fail-high (beta-cut) 
value from a PeerNode search, we then prune the remainder 
of the work units from that branch.  This indicates that the 
position searched by the PeerNode proved very strong for 
the opponent, and therefore that the parent position should 
never have been allowed to arise.  In this situation, we can 
cease analysis of the parent position and return an 
approximate upper limit for the score.  PeerNodes working 
on these work units receive an abort signal, and they return 
immediately to retrieve a new, useful work unit. 
 

III. CHESSBRAIN II 
 

A. Motivation 
 
The motivation behind ChessBrain II is to enable far greater 
scalability, whilst also improving the overall efficiency 
compared with the earlier version. Whilst ChessBrain I was 
able to support well over 2,000 remote machines, the lessons 
learned from the original design have enabled us to develop 
an improved infrastructure, which is suitable for a diverse 
range of applications. 
 

B. Technical Configuration 
 
ChessBrain II utilizes a custom server application, called 
msgCourier, which enables the construction of a hierarchical 
network topology that is designed to reduce network latency 
through the use of clustering as outlined in figure 2. The 
resulting topology introduces network hubs, the importance 
of which to graph theory has also been well covered in 
research superseding the random graph research of Erdos 
and Renyi and in the social network research of Milgram.  In 
brief, well placed communications hubs help create small 

world effects which radically improve the effectiveness of 
networked communication. [5, 6].   
The ChessBrain II system consists of three server 
applications, a SuperNode, ClusterNode and PeerNode. 

 
Component Purpose 
SuperNode 
 
 

Central server. Interfaces with the actual 
game being played. Manages work unit 
partitioning and distribution. 

ClusterNode 
 

Manages communities of local and 
distributed PeerNode servers. 

PeerNode 
 

Compute node servers. Performs work 
unit processing. 

Table 1. Server Types 
 
The central server no longer distributes work units 

directly to the PeerNodes, as was the case with ChessBrain 
I, instead work units are sent to an array of first-level 
ClusterNodes, operated by trusted community members.  
These ClusterNodes contain no chess-playing code and 
behave as network hubs (relay points) through which the 
complete set of work units can be passed.  

 

 
 

Fig. 2: ChessBrain II configuration 
 

 
Each ClusterNode contains a complete listing of all 

PeerNodes connected to it, together with a profiling score to 
determine the approximate CPU speed of the PeerNode, 
exactly as in ChessBrain I.  Each PeerNode connects to one 
and only one ClusterNode 

 
The ClusterNodes, having been allocated a selection of 

individual work units by the SuperNode, then divide up 
these work units as they see fit based on the profiling data 



 
 

 

that they obtain from their own network of PeerNodes.  The 
primary considerations are that the work units are distributed 
to sufficient machines to ensure a reliable reply within the 
time required, plus to ensure that the work units perceived to 
require a greater computation effort are allocated to those 
PeerNodes deemed most fit to analyse them. 

 
In subsequent versions, we intend to move some of the 

chess logic from the SuperNode onto the ClusterNodes, 
further reducing the communications overhead. Our 
anticipation is that the SuperNode will divide up the initial 
position into large tree chunks, and then distribute just these 
positions to the ClusterNodes. The ClusterNodes will then 
further subdivide the given positions, allocating the leaf 
nodes to the attached PeerNodes as it sees fit, and 
accumulating the returned results as and when they arrive.  
The ClusterNodes will then return a single result to the 
central SuperNode, instead of many. 

 

C. ChessBrain II Communication Protocols 
 
Early versions of ChessBrain relied on industry standard 

XML data encoding first using XMLRPC, and later using 
SOAP.  The decision to use SOAP was driven by a desire 
for interoperability with emerging web services.  However, 
the need to streamline communication has steered us toward 
minimizing our use of XML in favour of economical string 
based S-Expressions[7]. 

 
To further streamline communication we've implemented 

a compact communication protocol similar to the Session 
Initiation Protocol (SIP)[8] for use in LAN and cluster 
environments where we favour the use of connectionless 
UDP rather than stream-based TCP communication. 

 
The ChessBrain I communication protocol consisted of 

XML content which was first compressed using ZLib 
compression and then encrypted using the AES Rijndael 
cipher.  Although each PeerNode was quickly able to 
decrypt and decompress the payload content, the burden was 
clearly on the SuperNode server where each message to and 
from a PeerNode required encryption and compression 
operations.  The situation was compounded by the fact that 
each PeerNode communication occurred directly with a 
single central SuperNode server. 

 
With ChessBrain II we’ve eliminated direct PeerNode 

communication with the central SuperNode and introduced 
the concept of batch jobs, which combine multiple jobs into 
a single communication package.  The reduction in 
messaging reduces the impact to the TCP stack while the 
grouping of jobs greatly improves the compression ratio.   

D. Architecture Advantages 
The most significant architectural change to ChessBrain 
involves the introduction of network hubs called 
ClusterNodes, as outlined in section IIIB.   

 
ChessBrain I used a single SuperNode server to handle 

the remote coordination of hundreds of machines.  Each 
dispatched job required a direct session involving the 
exchange of multiple messages between the SuperNode and 
its PeerNode clients.  With ChessBrain II, jobs are 
distributed from a central server at distributedchess.net to 
remote ClusterNodes, which in turn manage local 
communities of PeerNodes.  Each ClusterNode receives a 
batch of jobs, which it can directly dispatch to local 
PeerNodes thereby eliminating the need for individual 
PeerNode to communicate directly with the central server.  
This is necessary to harness a compute cluster effectively. 
Each ClusterNode collects completed jobs and batches them 
for return shipment to the central SuperNode server.  The 
efficient use of ClusterNode hubs and job batching results in 
a reduced load on the central server, efficient use of clusters, 
reduced network lag, and improved fault tolerance.   
 

We envision that ClusterNodes will largely be used by 
individuals desiring to cluster local machines.  Indeed 
during the use of ChessBrain I we detected locally 
networked machines containing five to eighty machines.  
Most local networks in existence today support connection 
speeds between 10 to 1000 MBit per second, with the lower 
end of the spectrum devoted to wireless networks, and the 
higher end devoted to corporate networks, research 
networks and compute clusters.  ChessBrain II is designed to 
utilise cluster machines by taking full advantage of local 
intranet network speeds and only using slower Internet 
connections to communicate with the SuperNode when 
necessary. 
 

If we assume that there are roughly as many PeerNodes 
connected to each ClusterNode as there are ClusterNodes, 
then effectively the communications costs for each Cluster 
node, and indeed the SuperNode itself, is reduced to its 
square root. So, with total node count N, instead of one 
single bottleneck of size N, we now have approximately 
(sqrt(N)+1) bottlenecks, each of size sqrt(N). When 
addressing scalability issues, this is a definite advantage, 
allowing us to move from an effective node limit of 
approximately 2,000 to around one million machines. 

 

E. Architecture Drawbacks 
 

It is only fair to consider the drawbacks of the above 
architecture and to explain why it may not be suitable for 
every gaming application. 

 
Firstly, as with any distributed computation environment, 

there is a substantial overhead introduced by remote 
communication.  Indeed, communication costs increase as 
the number of available remote machines increases.  
ChessBrain I involved a single server solution that was 
overburdened as an unexpectedly large number of remote 
machines became available.  Communication overhead on 



 
 

 

ChessBrain I reached approximately one minute per move 
under peak conditions. However, with the experience gained 
since that first exhibition match, and with the subsequent 
redesign of ChessBrain I, we have reduced the overhead to 
less than ten seconds per move. 

 
The presence of communication overhead means that 

shorter time scale games are not currently suitable for 
distributed computation. However, games that favour a 
higher quality of play over speed of play are likely to make 
good use of distributed computation. 
 

Anyone who has ever attempted to write a fully-
functioning alpha-beta pruning chess search algorithm 
featuring a multitude of unsafe pruning algorithms such as 
null-move, will immediately appreciate the complexity of 
debugging a search anomaly produced from a network of 
several thousand computers, each of which is running a 
number of local tree searches and returning their results 
asynchronously. Some of the complexities of such an 
approach are covered in [9]. 

 
  Adding hierarchical distribution increases complexity, 

and highlights the importance of considering how a 
distributed application will be tested early in the design 
phase. With ChessBrain II we’ve had to build specialized 
testing applications in order to identify and correct serious 
flaws which might have otherwise proceeded undetected. 
Such a suite of testing tools is invaluable for a distributed 
application of this size. 
 

F. Comparison with alternative parallel implementations 
 

Other approaches towards parallelising search problems 
focus primarily on tightly-coupled compute clusters with 
shared memory. The aim of this paper is not to offer a 
thorough analysis of the advantages and drawbacks of 
remotely distributed search versus supercomputer or 
cluster-based search.  The main advantages of this method 
over that used by, for example, the Deep Blue project [10] 
and the more recent Hydra project are as follows: 
 

• Processing power – With many entirely separable 
applications, parallelising the search is a simple way to 
get extra processing power for very little extra 
overhead. For chess, the parallelisation procedure is 
highly inefficient when compared to serial search, but 
we chose this application because of its inherent 
difficulty, our own interest and its public image. 

• Distributed memory – With many machines 
contributing to the search, the total memory of the 
system is increased massively. Though there is much 
repetition and redundancy, this still partly overcomes 
the extra practical barrier imposed by the finite size of 
a transposition table in conventional search. 

• Availability – the framework described in this paper is 
applicable to a wide range of projects requiring 

substantial computing power. Not everyone has access 
to a supercomputer or a substantial Beowulf cluster. 

• Costs – It’s easier to appeal to 10,000 people to freely 
contribute resources than it is to convince one person 
to fund a 10,000 node cluster. 

 
Drawbacks include: 
 

• Communication overheads – time is lost in 
sending/receiving the results from PeerNodes. 

• Loss of shared memory – In games such as chess, the 
use of shared memory for a transposition table is 
highly beneficial. Losing this (amongst other cases) 
introduces many overheads into the search time [11] 

• Lack of control – the project manager has only a very 
limited control over whether or not the contributors 
choose to participate on any one occasion. 

• Debugging – This becomes horrendously complicated, 
as explained above. 

• Software support – The project managers must offer 
support on installing and configuring the software on 
remote machines. 

• Vulnerability – The distributed network is vulnerable 
to attacks from hackers, and must also ensure that 
malicious PeerNode operators are unable to sabotage 
the search results. 

 
At the present time, we are not aware of any other effort 
to evaluate game trees in a distributed style over the 
internet. 

G. Comparison with other Chess projects 
 

We are often asked to compare ChessBrain with more 
famous Chess machines such as Deep Blue and the more 
recent Hydra project. A direct comparison is particularly  
difficult as ChessBrain relies on considerably slower 
communication and commodity hardware.  In contrast, both 
Deep Blue and Hydra are based on a hardware-assisted brute 
force approach.  A more reasonable comparison would be 
between distributed chess applications running on GRIDs 
and distributed clusters. 

 

H. The need for MsgCourier 
 

While considering architectural requirements for 
ChessBrain II, we investigated a number of potential 
frameworks including the Berkeley Open Infrastructure for 
Network Computing (BOINC) project.  BOINC is a 
software application platform designed to simplify the 
construction of public computing projects and is presently in 
use by the SETI@home project, CERN’s Large Hadron 
Collider project and other high-profile distributed computing 
projects[12]. 

 
After extensive consideration we concluded that 

ChessBrain's unique requirements necessitated the 



 
 

 

construction of a new underlying server application 
technology[13]. One of our requirements for ChessBrain II's 
software is that it must be a completely self-contained 
application that is free of external application dependencies. 
In addition, our solution must be available for use on both 
Microsoft Windows and Linux based servers, while 
requiring near zero configuration.  The rationale behind 
these requirements is that ChessBrain II allows some of our 
contributors to host ClusterNode servers.  It is critically 
important that our contributors feel comfortable with 
installing and operating the project software.  We found that 
BOINC requires a greater level of system knowledge than 
we're realistically able to impose on our contributors. Lastly, 
BOINC was designed with a client and server methodology 
in mind, while our emerging requirements for ChessBrain II 
include Peer-to-Peer functionality.  
 

Well over a year ago we began work on the Message 
Courier (msgCourier) application server in support of 
ChessBrain II.  MsgCourier is designed to support speed 
critical computation using efficient network communication  
and enables clustering, which significantly improves overall 
efficiency. Unlike other technologies, msgCourier is 
designed to enable ad-hoc machine clusters and to leverage 
existing Beowulf clusters. 

 
MsgCourier is a hybrid server application that combines 

message queuing, HTTP server and P2P features.  When we 
embarked on this approach there were few such commercial 
server applications.  Today, Microsoft has release SQL 
Server 2005 which combines a SQL Engine, HTTP server 
and messaging server features.  The industry demands for 
performance necessitates the consideration of hybrid 
servers. 

 
We chose to build msgCourier independently of 

ChessBrain (and free of chess related functionality) in the 
hopes that it would prove useful to other researchers. 
 

The following were a few of our primary design 
considerations:  
 

• A hybrid application server, combining message 
queuing and dispatching with support for store and 
forward functionality. 

• Multithreaded concurrent connection server design 
able to support thousands of concurrent connections. 

• High-speed message based communication using 
TCP and UDP transport. 

• Built-in P2P functionality for self-organization and 
clustering, service adverting and subscribing. 

• Ease of deployment with minimal configuration 
requirements. 

• Built-in security features which are comparable to the 
use of SSL and or SSH. 

 
The msgCourier project is under continued development.  

We are keen to emphasize here that the relevance of the 

ChessBrain project is not just to the specific field of 
computer chess, but to any distributed computation project.  
Hence, we believe that the msgCourier software is a 
valuable contribution to all areas of computationally 
intensive research.  The direct application here demonstrates 
that the framework is also flexible enough to operate within 
gaming scenarios, where results are required on demand at 
high speed and with high fidelity, often in highly 
unpredictable search situations. 

 
More information on the msgCourier project is available 

at http://www.msgcourier.com 
 
 

CONCLUSIONS : THE FUTURE OF DISTRIBUTED GAMING 
 

Distributed computation offers the potential for deeper 
game tree analysis for a variety of potential gaming 
applications. In particular, it overcomes the restrictions 
imposed by Moore’s law, producing substantial gains for 
any game-playing code that is primarily computationally 
limited.  For games such as Go, the effective contribution is 
reduced as the branching factor is so high that such games 
are algorithmically limited rather than computationally 
limited in most cases. 

 
Speed-critical distributed computation also has many clear 

applications within the financial sector where rapid 
decisions must be made, often based on approximate or 
inadequate data.   

 
During the past decade we’ve seen high profile Man vs. 

Machine exhibitions.  We feel that the general public will 
eventually lose interest in exhibitions where a single human 
player competes against a machine which is virtually 
indistinguishable from the common personal desktop 
computer. Not since Deep Blue has any Man vs. Machine 
event really captured the public’s imagination. 

 
We feel strongly that the future of Man vs. Machine 

competitions will migrate toward a format where a human 
team competes against a distributed network.  Such events 
will take place over the Internet with distributed human 
members collaborating remotely from their native countries.  
This exhibition format will likely capture the public’s 
imagination as it more closely resembles themes played out 
in popular science fiction. 

 
On the ChessBrain project we’ve learned the importance 

of capturing the public’s imagination for without their 
support massively distributed computation would not be 
economically feasible[14]. Generally, a project is only as 
good as the contributors that it is able to attract.  This entire 
field of research – that of attracting distributed computation 
teams to a project – seems remarkably underdeveloped in 
the literature, despite the fact that it has an arguably greater 
effect on the success of any distributed project than any 



 
 

 

degree of algorithmic sophistication.  More work in this area 
seems extremely important, though it lies firmly within the 
realms of psychology and sociology rather than pure 
computer science. 
 

We’ve completed preliminary testing on small clusters 
with the support of ChessBrain community members [15]. 
During the first quarter of 2006 we intend to release a major 
update of our project software when we will begin large-
scale public testing of ChessBrain II.  We expect ChessBrain 
II to be fully operational by the second quarter of 2006. 
 

We are actively preparing for a second demonstration 
match between ChessBrain II and a leading international 
chess grandmaster within the next 12 months.  Anyone 
wishing to contribute to this event is welcome to contact the 
authors at the addresses supplied. 
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