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The ChessBrain project was created to investigate the feasibility of massively distributed, inhomogeneous, speed-critical computa-

tion on the Internet.  The game of chess lends itself extremely well to such an experiment by virtue of the innately parallel nature of 
game tree analysis. We believe that ChessBrain is the first project of its kind to address and solve many of the challenges posed by 
stringent time limits in distributed calculations.  These challenges include ensuring adequate security against organized attacks; dealing 
with non-simultaneity and network lag; result verification; sharing of common information; optimizing redundancy and intelligent 
work distribution. 

 
 

1  INTRODUCTION  

The ChessBrain project was founded in January 2002.  Its princi-
pal aim was to investigate the use of distributed computation for 
a time-critical application.  Chess was chosen because of its in-
nately parallelisable nature, and also because of the authors’ 
personal interest in the game. (Justiniano (2003), Justiniano & 
Frayn (2003)) 

Development of ChessBrain was privately financed by the au-
thors, and was developed primarily over the last few months of 
2002.  It played its first complete game against an automated 
opponent at the end of December 2002.  In the subsequent thir-
teen months, much work was done in refining the distribution 
algorithms and in improving the stability and ease-of-use of the 
freely downloadable client software. 

In this paper, we introduce the algorithms used in computer 
chess to analyse a given board position, and we explain how 
these initial principles were expanded to a fully distributed 
framework.  We also discuss the relevance of such work to the 
field of distributed computation in general. 

2 COMPUTER CHESS 

The first algorithm designed to play chess was informally pro-
posed by Alan Turing in 1947, though no computers on which it 
could be tested yet existed.  Undaunted, Turing learnt to evaluate 
the algorithm in his head for each move.  This was probably the 
first ever example of a chess game played by formula.  Unsur-
prisingly he didn’t meet with much success, though within a few 
years Turing was already considering the possibility that a com-
puter program might be able to out-play its creator (Turing, 
1952). 

The science of computer chess has therefore been in existence 
for a little over half a century.  A computer first beat a human in 
1958, though the opponent was an untrained secretary who had 
been introduced to the game just a few minutes earlier.  It was 
not until 1977 when a Grandmaster first lost to a computer in a 
rapid game, and in 1992 when the then World Champion, Garry 

Kasparov, lost in speed chess to the programme Fritz 2.  Most 
famously, in 1997, the IBM supercomputer Deep Blue beat GM 
Kasparov in a high-profile match at standard time controls.  Just 
seven years ago, the fastest, most expensive chess computer ever 
built (Hsu (1999)) finally managed to beat the top human player. 

The goals behind the ChessBrain project were very clear.  
Firstly, we wanted to illustrate the power of distributed computa-
tion applied to a well-known problem during an easily publicised 
challenge.  Secondly, we wanted to investigate the extent to 
which we could extend the boundaries of distributed computation 
in the direction of speed-critical analysis.  Along with these mo-
tives, we also wanted to make a system capable of holding its 
own against the best in the world and, ultimately, of outperform-
ing them. 

Turing’s original algorithm for searching a chess position was 
very simple, and forms the basis to the algorithms used today.  
The basic principle is very easily understood: “Any move is only 
as good as your opponent’s best reply.”  This is a unique facet of 
zero-sum games such as chess and draughts, and allows us to 
evaluate a game tree unambiguously. 

To analyse a particular board position, we simply make a list 
of each potential legal move.  We test each of these moves in 
turn, arriving at a resulting board position, from which we list the 
opponent’s legal replies.  At any one position, the node value is 
equal to minus the value of the opponent’s best reply.  That is to 
say, a move that is very good for white is necessarily very bad 
for black, and vice versa.  This process is called a minimax 
search, meaning that we are maximising the score for one player, 
and therefore minimising it for the other. 

The minimax search algorithm allows us to build up a game 
tree consisting of the legal moves, and replies to those moves, 
and so on as deep as we wish to search.  We then terminate the 
algorithm either at a predetermined depth or, more usually, after 
a fixed length of time, and assign values to the leaf nodes by 
performing a static evaluation of the resultant board positions. 

Of course, this is an exponential progression. The game tree 
will expand in size by a factor equal to the number of legal 
moves from each position.  For an average middle-game position, 
this number is approximately 35.  That means that the size of the 
game tree quickly becomes too large to search. 
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There are several algorithms used by the top chess pro-

grammes in order to overcome the problem of exponential game-
tree growth.  Most of them work by reducing the branching fac-
tor of the tree at each node.  The most obvious, and vital, of these 
is alpha-beta search (Newell, Shaw & Simon (1958)).  This 
encodes the rule that “any branch that cannot possibly affect the 
minimax value of the current node can safely be pruned en-
tirely”.  Without exploring the details of this algorithm, in sum-
mary it reduces the branching factor at each node to approxi-
mately the square root of its previous value, and therefore dou-
bles the depth to which we can search in the same, fixed time. 

At the top level, therefore, chess analysis reduces to a ques-
tion of how quickly one can search a large game tree, and how 
much of the game tree can safely be pruned without affecting the 
result. In practice, all programmes today use theoretically un-
sound heuristics to prune the game tree further than alpha-beta 
search allows, though doing so introduces the element of uncer-
tainty and chance into the analysis - it becomes theoretically 
possible that the optimum move within the game tree might not 
be found.  The negative possibilities are balanced against the 
positive gains in order to assess the potential value of such heu-
ristics. 

Fig 1: Simplified schematic of the ChessBrain architecture. 
 

3.2 Positional Search 

The ChessBrain project borrows its core distributed search algo-
rithms from the APHID algorithm (Brockington, (1997)).  It 
implements an incremental, iterative deepening search, firstly 
locally on the server and then, after a certain fixed time, within 
the distribution loop.  During this latter phase, the top few ply of 
the search tree are analysed repeatedly, with new leaf nodes be-
ing distributed for analysis as soon as they arise.  Any informa-
tion received from the PeerNodes is then incorporated into the 
search tree, with branches immediately being extended or pruned 
as necessary. 

Example heuristics are Null-move search (Beal (1989)), futil-
ity pruning (Heinz (1998)) and razoring (Birmingham and Kent 
(1977)).  There are also some other algorithms that, whilst theo-
retically sound, are not guaranteed always to reduce the time 
required to search a given position and may cause a worsening of 
search speed in some cases e.g. principal variation search (Reine-
feld (1983)) and MTD(f) search (Plaat (1996)). 

Leaf nodes are distributed to PeerNodes as work units.  
These encode the current position to be analysed and the depth to 
which it should be searched.  Work units are distributed to the 
connected PeerNodes on a request basis, though they are also 
ranked in order of estimated complexity using intelligent 
extrapolation from their recorded complexity at previous, shal-
lower depths.  In this way, the most complex work units can be 
distributed to the most powerful PeerNodes and vice versa.  
Work units that are estimated to be far too complex to be 
searched within a reasonable time are further subdivided by one 
ply, and the resulting, shallower child nodes are distributed 
instead.  Work units which become unnecessary are deleted. 

3 DISTRIBUTED CHESS ALGORITHMS 

3.1 Internal Structure 

By thinking briefly about how a human analyses chess positions, 
it becomes obvious why this game is so well suited to distributed 
computation.  The outcome of the analysis of one move from a 
given position is totally independent of the outcome of the analy-
sis of its sibling nodes.  The only caveat to this statement is that 
lack of knowledge of sibling nodes severely cripples our ability 
to prune the upper parts of the game tree.  It is expected that the 
extra number of CPUs applied to the task will more than com-
pensate for this.  Indeed, distributed chess computation becomes 
a problem of minimising the drawbacks as much as possible and 
compensating for the unavoidable ones by strength in numbers. 

4 CHALLENGES UNIQUE TO SPEED-CRITICAL DIS-
TRIBUTED COMPUTATION 

4.1 Local Search 

The overwhelming majority of work in the literature has consid-
ered distributed computation as an unhurried problem.  That is to 
say, we are not concerned when we obtain results from various 
computations, or in which order they arrive.  Provided, that is, 
that we complete the calculation within an acceptable time span, 
say a few hours or days.  For chess, we have a very tight time 
limit imposed on every move, and this introduces a large set of 
challenges that must be overcome. 

In order to implement a distributed chess search algorithm, we 
created the following framework (Fig. 1).  The central Super-
Node coordinates the efforts of many PeerNode machines con-
nected through the Internet.  Each component comprises many 
separate parts, which will be covered in more detail in section 4. 

The chess board analysis is performed in the central server 
by the BeoServer application, and on the PeerNode machines 
using the BeoClient engine.  Both these are based on the existing 
open-source chess engine written by CMF and contain identical 
analysis and search algorithms.  All PeerNodes are given exactly 
the same analysis and evaluation parameters, which ensures that 
the results from PeerNodes searching the same position agree 
with each other.  It also allows the SuperNode to predict the time 
complexity of each work unit. 

The most obvious challenge posed by speed-critical distrib-
uted computation is simply that we must ensure that we achieve a 
sensible result within the designated time limit.  Our first task is 
to do just this – to obtain a result that is at least satisfactory so 
that, in our worst-case scenario, we don’t play a terrible move. 

To do this, we begin the search locally, analysing for a fixed 
length of time without distributing any work units whatsoever.  
During this period, it may be that an easy winning move is dis-
covered; alternatively, we may be running out of time, meaning 
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that a distributed search is not wise due to the inevitable time 
overheads involved. 

However, if we have sufficient time left, and the local search 
does not reveal any straightforward winning moves, then the 
distributed search begins, but we already have a result from a 
limited local search that could be used if the distributed search 
fails to locate and verify a definite improvement. 

 
4.2 Job Duplication 

Once the distributed search has commenced, it is necessary to 
ensure that we optimise our chances of recovering results from 
all the vital work units as soon as possible.  We use three sepa-
rate techniques to ensure this.  

 
1. We distribute each work unit to more than one Peer-

Node machine. 
2. We distribute nodes that appear to be the most impor-

tant with the highest priority.  
3. We estimate the complexity of each work unit before it 

is sent to PeerNodes so that we can send those that re-
quire the most computation to the fastest PeerNodes, 
and vice versa. 

Another obvious attack point was the linkage between the 
chess analysis engine and the communications software in the 
PeerNode client.  It was decided early on to join these two ele-
ments together in one executable file to avoid the extra commu-
nications overhead, and to remove another exposed pipe that 
could easily be exploited. 

 
This is where the intrinsic difference between internet-based 

distributed computation projects and many traditional distributed 
computation projects is most clearly highlighted.  The PeerNodes 
are of greatly varying internal specification and connection 
speed.  Some PeerNodes will be brand new, high performance 
research machines, and some are ancient UNIX servers.  Not 
only does the software have to work perfectly across these di-
verse platforms and architectures, but it should also optimally 
utilise the available resources. 

Figure 2 shows the many communication channels that exist 
within the ChessBrain architecture, several of which presented 
significant security issues.  Communications between the Peer-
Nodes and the central server were sent using encrypted SOAP 
messages over HTTP using TCP/IP.  The encryption used is the 
industrial strength Advanced Encryption Standard, formally 
known as Rigndael. Each PeerNode client has a different encryp-
tion key, which is built using characteristics of the client system.  
Cracking the encryption key on one PeerNode will not compro-
mise the hundreds of remaining nodes. 

In some circumstances, we are also required to deal with the 
possibility that a particular PeerNode might have been switched 
off, crashed or disconnected while processing a work unit.  In 
these cases we must ensure that the work unit is duplicated on 
other PeerNodes if we wish to receive a result.  Otherwise, the 
analysis could be delayed forever waiting for an extinct Peer-
Node. 

The SuperNode and PeerNodes also compress data using the 
Zlib compression library (written by Jean-loup Gailly & Mark 
Adler).  Data is first compressed and later encrypted, giving a 
second layer of protection against malicious attacks. 

In addition, the client software was supplied with MD5 
checksum values (Rivest, 1992) and GnuPG (Gnu Privacy 
Guard) digital signatures, so that PeerNode operators could ver-
ify the unaltered condition of any software supplied by the 
ChessBrain team.   

When considering job duplication, there is a trade-off be-
tween ensuring that each work unit is sent out enough times to 
ensure it is returned efficiently and quickly, whereas at the same 
time, avoiding excess duplication - we have a lot of work units to 
evaluate and only a finite amount of time in which to do so.  In 
practice, each node is sent out to a fixed number of initial Peer-
Nodes, though at a later time, more PeerNodes can be assigned to 
the task if a result has not been achieved within a reasonable time 
frame.  These values are all open to optimisation. 

5 PRELIMINARY RESULTS 

5.1 ChessBrain vs. GM Peter Heine-Nielsen  
4.3 Security Issues On 30th January 2004, ChessBrain played its first publicized 

game against a rated human player under an official judicator.  
This was the first time a fully distributed chess project had ever 
completed a game in such conditions.  Our opponent was top 
Danish Grandmaster, Peter Heine Nielsen.  A total of 2,070 indi-
vidual machines from 56 different countries around the world 
participated in the event, which resulted in a draw after 34 
moves. Individual machines were identified using the unique 
combination of IP address and Ethernet MAC address 

Chess is a highly unstable analysis problem: One single errone-
ous result could possibly corrupt an entire search and render any 
conclusion unreliable.  It was therefore critical in ChessBrain that 
we dealt with security issues very carefully. 

The first major consideration that we implemented was to 
remove all precalculated data files from the PeerNode software 
package.  BeoClient was compiled with a hard-coded parameter 
set that represented a safe, well tested selection of options and 
algorithms that we were confident could produce reliable results.  
End game and opening searches were performed on the server, 
where only the project development team had access. 

 
5.2 Dealing with network overloading 

As chess is a speed-critical application, with lots of work units 
being distributed and returned within a few seconds, the network Fig. 2: Detailed overview of the ChessBrain architecture, outlin-

ing the many communication channels. 

3 



load is high.  ChessBrain was initially tested in a LAN setup 
where this did not pose a problem.  Indeed, until 24 hours before 
the Copenhagen event, the record number of distinct machines 
connected during any single fifteen minute period was just 846, 
and this was itself a recent result. 
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high-profile matches. 

ntribution for all PeerNodes. 
r user.  Only 
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During the world record attempt, we logged a total of 2,070 
separate contributors.  The maximum number of concurrent con-
tributors was slightly less than this number because some Peer-
Node operators did not remain connected for the entire match.  
As we had never tested the infrastructure at anywhere near this 
level of network activity, we unsurprisingly encountered some 
very serious challenges.  Indeed, this first major test for the 
ChessBrain project proved nearly fatal for the entire event.  In 
effect, we were suffering a severe distributed denial of service 
attack, but with the extra caveat that we had actually requested it! 

In order to deal with this problem, we experimented with a 
much more severe PeerNode control algorithm.  When there is 
insufficient work for the connecting PeerNodes they are forced to 
disconnect for a fixed delay time, related to their CPU speed.  
The system we used in the game was far harsher than anything 
we had tested before, but the overwhelming volume of network 
traffic required this. 
 
5.3 Game Statistics 

The total number of useful nodes processed was 84,771,654,525; 
that is the number of nodes calculated for work units that were 
accepted by the central server.  Many more nodes were processed 
in work units that were never delivered due to server connection 
issues, as well as those nodes that were aborted before a result 
was returned.  ChessBrain used a total of 2 hours, 15 minutes of 
thinking time.  Using just the useful returned data, this gives an 
average of 10.5 million nodes per second.  By contrast, Beowulf 
analyses approximately 100,000 nodes per second in an average 
position on a single P4/2.8GHz machine.  This means, in terms 
of raw node processing, that ChessBrain performed at the level of 
a single 280 GHz CPU. 

These figures also tell us that ChessBrain’s efficiency in terms 
of converting connected machines to raw processing power was 
approximately 100 / 2,070 = 5%.  Improving the central server 
architecture so that the connection problems are resolved would 
improve this figure dramatically.  We are working on a server 
redesign to overcome this challenge before we enter any more 

Figure 3: CPU time co
Figure 3 shows the total CPU time contributed pe
% of users contributed more than 1,000 CPU seconds to the 

project, and only 13.3% contributed more than ten minutes (600 
seconds).  There was little correlation between contributed CPU 

time and processor speed – the principal variable here seems to 
be whether individual PeerNodes could connect to the server. 
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