
The ChessBrain Project – Massively Distributed Inhomogeneous Speed-
Critical Computation

C. M. Frayn
CERCIA, School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
C.M.Frayn@cs.bham.ac.uk

C. Justiniano
ChessBrain Project, Newbury Park, CA, USA

cjus@chessbrain.net

The ChessBrain project was created to investigate the feasibility of massively distributed, inhomogeneous, speed-critical computa-

tion on the Internet. The game of chess lends itself extremely well to such an experiment by virtue of the innately parallel nature of
game tree analysis. We believe that ChessBrain is the first project of its kind to address and solve many of the challenges posed by
stringent time limits in distributed calculations. These challenges include ensuring adequate security against organized attacks; dealing
with non-simultaneity and network lag; result verification; sharing of common information; optimizing redundancy and intelligent
work distribution.

1 INTRODUCTION

The ChessBrain project was founded in January 2002. Its princi-
pal aim was to investigate the use of distributed computation for
a time-critical application. Chess was chosen because of its in-
nately parallelisable nature, and also because of the authors’
personal interest in the game. (Justiniano (2003), Justiniano &
Frayn (2003))

Development of ChessBrain was privately financed by the au-
thors, and was developed primarily over the last few months of
2002. It played its first complete game against an automated
opponent at the end of December 2002. In the subsequent thir-
teen months, much work was done in refining the distribution
algorithms and in improving the stability and ease-of-use of the
freely downloadable client software.

In this paper, we introduce the algorithms used in computer
chess to analyse a given board position, and we explain how
these initial principles were expanded to a fully distributed
framework. We also discuss the relevance of such work to the
field of distributed computation in general.

2 COMPUTER CHESS

The first algorithm designed to play chess was informally pro-
posed by Alan Turing in 1947, though no computers on which it
could be tested yet existed. Undaunted, Turing learnt to evaluate
the algorithm in his head for each move. This was probably the
first ever example of a chess game played by formula. Unsur-
prisingly he didn’t meet with much success, though within a few
years Turing was already considering the possibility that a com-
puter program might be able to out-play its creator (Turing,
1952).

The science of computer chess has therefore been in existence
for a little over half a century. A computer first beat a human in
1958, though the opponent was an untrained secretary who had
been introduced to the game just a few minutes earlier. It was
not until 1977 when a Grandmaster first lost to a computer in a
rapid game, and in 1992 when the then World Champion, Garry

Kasparov, lost in speed chess to the programme Fritz 2. Most
famously, in 1997, the IBM supercomputer Deep Blue beat GM
Kasparov in a high-profile match at standard time controls. Just
seven years ago, the fastest, most expensive chess computer ever
built (Hsu (1999)) finally managed to beat the top human player.

The goals behind the ChessBrain project were very clear.
Firstly, we wanted to illustrate the power of distributed computa-
tion applied to a well-known problem during an easily publicised
challenge. Secondly, we wanted to investigate the extent to
which we could extend the boundaries of distributed computation
in the direction of speed-critical analysis. Along with these mo-
tives, we also wanted to make a system capable of holding its
own against the best in the world and, ultimately, of outperform-
ing them.

Turing’s original algorithm for searching a chess position was
very simple, and forms the basis to the algorithms used today.
The basic principle is very easily understood: “Any move is only
as good as your opponent’s best reply.” This is a unique facet of
zero-sum games such as chess and draughts, and allows us to
evaluate a game tree unambiguously.

To analyse a particular board position, we simply make a list
of each potential legal move. We test each of these moves in
turn, arriving at a resulting board position, from which we list the
opponent’s legal replies. At any one position, the node value is
equal to minus the value of the opponent’s best reply. That is to
say, a move that is very good for white is necessarily very bad
for black, and vice versa. This process is called a minimax
search, meaning that we are maximising the score for one player,
and therefore minimising it for the other.

The minimax search algorithm allows us to build up a game
tree consisting of the legal moves, and replies to those moves,
and so on as deep as we wish to search. We then terminate the
algorithm either at a predetermined depth or, more usually, after
a fixed length of time, and assign values to the leaf nodes by
performing a static evaluation of the resultant board positions.

Of course, this is an exponential progression. The game tree
will expand in size by a factor equal to the number of legal
moves from each position. For an average middle-game position,
this number is approximately 35. That means that the size of the
game tree quickly becomes too large to search.

1

There are several algorithms used by the top chess pro-

grammes in order to overcome the problem of exponential game-
tree growth. Most of them work by reducing the branching fac-
tor of the tree at each node. The most obvious, and vital, of these
is alpha-beta search (Newell, Shaw & Simon (1958)). This
encodes the rule that “any branch that cannot possibly affect the
minimax value of the current node can safely be pruned en-
tirely”. Without exploring the details of this algorithm, in sum-
mary it reduces the branching factor at each node to approxi-
mately the square root of its previous value, and therefore dou-
bles the depth to which we can search in the same, fixed time.

At the top level, therefore, chess analysis reduces to a ques-
tion of how quickly one can search a large game tree, and how
much of the game tree can safely be pruned without affecting the
result. In practice, all programmes today use theoretically un-
sound heuristics to prune the game tree further than alpha-beta
search allows, though doing so introduces the element of uncer-
tainty and chance into the analysis - it becomes theoretically
possible that the optimum move within the game tree might not
be found. The negative possibilities are balanced against the
positive gains in order to assess the potential value of such heu-
ristics.

Fig 1: Simplified schematic of the ChessBrain architecture.

3.2 Positional Search

The ChessBrain project borrows its core distributed search algo-
rithms from the APHID algorithm (Brockington, (1997)). It
implements an incremental, iterative deepening search, firstly
locally on the server and then, after a certain fixed time, within
the distribution loop. During this latter phase, the top few ply of
the search tree are analysed repeatedly, with new leaf nodes be-
ing distributed for analysis as soon as they arise. Any informa-
tion received from the PeerNodes is then incorporated into the
search tree, with branches immediately being extended or pruned
as necessary.

Example heuristics are Null-move search (Beal (1989)), futil-
ity pruning (Heinz (1998)) and razoring (Birmingham and Kent
(1977)). There are also some other algorithms that, whilst theo-
retically sound, are not guaranteed always to reduce the time
required to search a given position and may cause a worsening of
search speed in some cases e.g. principal variation search (Reine-
feld (1983)) and MTD(f) search (Plaat (1996)).

Leaf nodes are distributed to PeerNodes as work units.
These encode the current position to be analysed and the depth to
which it should be searched. Work units are distributed to the
connected PeerNodes on a request basis, though they are also
ranked in order of estimated complexity using intelligent
extrapolation from their recorded complexity at previous, shal-
lower depths. In this way, the most complex work units can be
distributed to the most powerful PeerNodes and vice versa.
Work units that are estimated to be far too complex to be
searched within a reasonable time are further subdivided by one
ply, and the resulting, shallower child nodes are distributed
instead. Work units which become unnecessary are deleted.

3 DISTRIBUTED CHESS ALGORITHMS

3.1 Internal Structure

By thinking briefly about how a human analyses chess positions,
it becomes obvious why this game is so well suited to distributed
computation. The outcome of the analysis of one move from a
given position is totally independent of the outcome of the analy-
sis of its sibling nodes. The only caveat to this statement is that
lack of knowledge of sibling nodes severely cripples our ability
to prune the upper parts of the game tree. It is expected that the
extra number of CPUs applied to the task will more than com-
pensate for this. Indeed, distributed chess computation becomes
a problem of minimising the drawbacks as much as possible and
compensating for the unavoidable ones by strength in numbers.

4 CHALLENGES UNIQUE TO SPEED-CRITICAL DIS-
TRIBUTED COMPUTATION

4.1 Local Search

The overwhelming majority of work in the literature has consid-
ered distributed computation as an unhurried problem. That is to
say, we are not concerned when we obtain results from various
computations, or in which order they arrive. Provided, that is,
that we complete the calculation within an acceptable time span,
say a few hours or days. For chess, we have a very tight time
limit imposed on every move, and this introduces a large set of
challenges that must be overcome.

In order to implement a distributed chess search algorithm, we
created the following framework (Fig. 1). The central Super-
Node coordinates the efforts of many PeerNode machines con-
nected through the Internet. Each component comprises many
separate parts, which will be covered in more detail in section 4.

The chess board analysis is performed in the central server
by the BeoServer application, and on the PeerNode machines
using the BeoClient engine. Both these are based on the existing
open-source chess engine written by CMF and contain identical
analysis and search algorithms. All PeerNodes are given exactly
the same analysis and evaluation parameters, which ensures that
the results from PeerNodes searching the same position agree
with each other. It also allows the SuperNode to predict the time
complexity of each work unit.

The most obvious challenge posed by speed-critical distrib-
uted computation is simply that we must ensure that we achieve a
sensible result within the designated time limit. Our first task is
to do just this – to obtain a result that is at least satisfactory so
that, in our worst-case scenario, we don’t play a terrible move.

To do this, we begin the search locally, analysing for a fixed
length of time without distributing any work units whatsoever.
During this period, it may be that an easy winning move is dis-
covered; alternatively, we may be running out of time, meaning

2

that a distributed search is not wise due to the inevitable time
overheads involved.

However, if we have sufficient time left, and the local search
does not reveal any straightforward winning moves, then the
distributed search begins, but we already have a result from a
limited local search that could be used if the distributed search
fails to locate and verify a definite improvement.

4.2 Job Duplication

Once the distributed search has commenced, it is necessary to
ensure that we optimise our chances of recovering results from
all the vital work units as soon as possible. We use three sepa-
rate techniques to ensure this.

1. We distribute each work unit to more than one Peer-

Node machine.
2. We distribute nodes that appear to be the most impor-

tant with the highest priority.
3. We estimate the complexity of each work unit before it

is sent to PeerNodes so that we can send those that re-
quire the most computation to the fastest PeerNodes,
and vice versa.

Another obvious attack point was the linkage between the
chess analysis engine and the communications software in the
PeerNode client. It was decided early on to join these two ele-
ments together in one executable file to avoid the extra commu-
nications overhead, and to remove another exposed pipe that
could easily be exploited.

This is where the intrinsic difference between internet-based

distributed computation projects and many traditional distributed
computation projects is most clearly highlighted. The PeerNodes
are of greatly varying internal specification and connection
speed. Some PeerNodes will be brand new, high performance
research machines, and some are ancient UNIX servers. Not
only does the software have to work perfectly across these di-
verse platforms and architectures, but it should also optimally
utilise the available resources.

Figure 2 shows the many communication channels that exist
within the ChessBrain architecture, several of which presented
significant security issues. Communications between the Peer-
Nodes and the central server were sent using encrypted SOAP
messages over HTTP using TCP/IP. The encryption used is the
industrial strength Advanced Encryption Standard, formally
known as Rigndael. Each PeerNode client has a different encryp-
tion key, which is built using characteristics of the client system.
Cracking the encryption key on one PeerNode will not compro-
mise the hundreds of remaining nodes.

In some circumstances, we are also required to deal with the
possibility that a particular PeerNode might have been switched
off, crashed or disconnected while processing a work unit. In
these cases we must ensure that the work unit is duplicated on
other PeerNodes if we wish to receive a result. Otherwise, the
analysis could be delayed forever waiting for an extinct Peer-
Node.

The SuperNode and PeerNodes also compress data using the
Zlib compression library (written by Jean-loup Gailly & Mark
Adler). Data is first compressed and later encrypted, giving a
second layer of protection against malicious attacks.

In addition, the client software was supplied with MD5
checksum values (Rivest, 1992) and GnuPG (Gnu Privacy
Guard) digital signatures, so that PeerNode operators could ver-
ify the unaltered condition of any software supplied by the
ChessBrain team.

When considering job duplication, there is a trade-off be-
tween ensuring that each work unit is sent out enough times to
ensure it is returned efficiently and quickly, whereas at the same
time, avoiding excess duplication - we have a lot of work units to
evaluate and only a finite amount of time in which to do so. In
practice, each node is sent out to a fixed number of initial Peer-
Nodes, though at a later time, more PeerNodes can be assigned to
the task if a result has not been achieved within a reasonable time
frame. These values are all open to optimisation.

5 PRELIMINARY RESULTS

5.1 ChessBrain vs. GM Peter Heine-Nielsen
4.3 Security Issues On 30th January 2004, ChessBrain played its first publicized

game against a rated human player under an official judicator.
This was the first time a fully distributed chess project had ever
completed a game in such conditions. Our opponent was top
Danish Grandmaster, Peter Heine Nielsen. A total of 2,070 indi-
vidual machines from 56 different countries around the world
participated in the event, which resulted in a draw after 34
moves. Individual machines were identified using the unique
combination of IP address and Ethernet MAC address

Chess is a highly unstable analysis problem: One single errone-
ous result could possibly corrupt an entire search and render any
conclusion unreliable. It was therefore critical in ChessBrain that
we dealt with security issues very carefully.

The first major consideration that we implemented was to
remove all precalculated data files from the PeerNode software
package. BeoClient was compiled with a hard-coded parameter
set that represented a safe, well tested selection of options and
algorithms that we were confident could produce reliable results.
End game and opening searches were performed on the server,
where only the project development team had access.

5.2 Dealing with network overloading

As chess is a speed-critical application, with lots of work units
being distributed and returned within a few seconds, the network Fig. 2: Detailed overview of the ChessBrain architecture, outlin-

ing the many communication channels.

3

load is high. ChessBrain was initially tested in a LAN setup
where this did not pose a problem. Indeed, until 24 hours before
the Copenhagen event, the record number of distinct machines
connected during any single fifteen minute period was just 846,
and this was itself a recent result.

4

high-profile matches.

ntribution for all PeerNodes.
r user. Only

7.5

During the world record attempt, we logged a total of 2,070
separate contributors. The maximum number of concurrent con-
tributors was slightly less than this number because some Peer-
Node operators did not remain connected for the entire match.
As we had never tested the infrastructure at anywhere near this
level of network activity, we unsurprisingly encountered some
very serious challenges. Indeed, this first major test for the
ChessBrain project proved nearly fatal for the entire event. In
effect, we were suffering a severe distributed denial of service
attack, but with the extra caveat that we had actually requested it!

In order to deal with this problem, we experimented with a
much more severe PeerNode control algorithm. When there is
insufficient work for the connecting PeerNodes they are forced to
disconnect for a fixed delay time, related to their CPU speed.
The system we used in the game was far harsher than anything
we had tested before, but the overwhelming volume of network
traffic required this.

5.3 Game Statistics

The total number of useful nodes processed was 84,771,654,525;
that is the number of nodes calculated for work units that were
accepted by the central server. Many more nodes were processed
in work units that were never delivered due to server connection
issues, as well as those nodes that were aborted before a result
was returned. ChessBrain used a total of 2 hours, 15 minutes of
thinking time. Using just the useful returned data, this gives an
average of 10.5 million nodes per second. By contrast, Beowulf
analyses approximately 100,000 nodes per second in an average
position on a single P4/2.8GHz machine. This means, in terms
of raw node processing, that ChessBrain performed at the level of
a single 280 GHz CPU.

These figures also tell us that ChessBrain’s efficiency in terms
of converting connected machines to raw processing power was
approximately 100 / 2,070 = 5%. Improving the central server
architecture so that the connection problems are resolved would
improve this figure dramatically. We are working on a server
redesign to overcome this challenge before we enter any more

Figure 3: CPU time co
Figure 3 shows the total CPU time contributed pe
% of users contributed more than 1,000 CPU seconds to the

project, and only 13.3% contributed more than ten minutes (600
seconds). There was little correlation between contributed CPU

time and processor speed – the principal variable here seems to
be whether individual PeerNodes could connect to the server.

ACKNOWLEDGMENTS

CMF acknowledges the help of Advantage West Midlands in
supporting his current research post. CMF and CJ are grateful to
Kenneth Geisshirt and the DKUUG for bringing our record at-
tempt to Denmark; ChessBrain member, Peter Wilson for his
unwavering faith, support, and dedication; The Distributed Com-
puting Foundation for organizational support and Y3K Secure
Enterprise Software Inc. for their generous financial support.

Extra thanks go to Sven Herrmann and Farooque Khan for
their work on the SuperNode monitoring software. This software
uses SQLite, written by D. Richard Hipp et al. We acknowledge
also use of the AES-Rijndael encryption standard and Zlib com-
pression and encryption software.

And lastly, thanks to all the other members of the ChessBrain
community who helped during the development period. They are
too numerous to be listed here, but can be found at the following
URL; http://www.chessbrain.net/wra/team.html

REFERENCES

Beal, D.F. 1989, Experiments with the null move. Advances in
Computer Chess 5, (Ed. D.F. Beal), pp. 65–79. Elsevier Sci-
ence Publishers

Birmingham, J.A. & Kent, P. 1977 Tree-searching and tree-
pruning techniques. Advances in Computer Chess 1, (Ed.
M.R.B. Clarke), pp. 89–107. Edinburgh University Press

Brockington, M. 1997 PhD Thesis, University of Alberta, Dept.
of Computer Science

Heinz, E. A. 1998 ICCA Journal, Vol. 21, No. 2
Heinz, E.A. 1999 ICCA Journal, Vol. 22, No. 3, pp. 123–132
Hsu, F.-h. 1999 IEEE Micro, Vol. 19, No. 2, pp. 70–80.
Justiniano, C. & Frayn, C.M. 2003 ICGA Journal, Vol. 26, No.

2, 132-138
Justiniano, C. 2003 Linux Journal, September 2003
Justiniano, C. 2004, O’Reilly Network Technical Articles, 16th,

23rd April 2004. http://www.oreillynet.com/pub/au/1812
Newell, A., et al. 1958 IBM Journal of Research and Develop-

ment, Vol. 2, No. 4, pp. 320-335

0

1000

2000

3000

4000

5000

6000

7000

8000

1 81 16
1

24
1

32
1

40
1

48
1

56
1

64
1

72
1

80
1

88
1

96
1

10
41

11
21

12
01

12
81

13
61

14
41

15
21

16
01

16
81

17
61

18
41

19
21

20
01

PeerNode ID

C
PU

 T
im

e
/ s

ec
on

ds

Plaat, A. 1996, PhD Thesis, Erasmus University, Rotterdam.
Reinefeld, A. 1983 ICCA Journal, 6(4): 4-14
Reinefeld, A. & Marsland, T.A. 1994 IEEE Transactions on

Pattern Analysis and Machine Intelligence, 16(7): 701-710
Rivest, R. L. 1992, Internet Request for Comments, RFC1321.

http://userpages.umbc.edu/~mabzug1/cs/md5/md5.html
Turing, A. 1952, The British Journal for the Philosophy of Sci-

ence, Vol. 3, No. 9.

	1 INTRODUCTION
	2COMPUTER CHESS
	3.1 Internal Structure
	3.2 Positional Search
	4.1 Local Search
	4.2 Job Duplication
	4.3 Security Issues
	5.1 ChessBrain vs. GM Peter Heine-Nielsen
	5.2 Dealing with network overloading
	5.3 Game Statistics

	ACKNOWLEDGMENTS
	REFERENCES

