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Abstract 
 

 Next generation volunteer-based distributed 
computing projects are working to embrace a wide 
range of distributed computing environments. In this 
paper we report on our early experiences with the 
ChessBrain II project, an established collaboration 
between researchers in a number of countries, 
investigating the feasibility of inhomogeneous speed-
critical distributed computation. 
 
1. Volunteer-based distributed computing 
 
The term “Volunteer Computing” has emerged to 
describe distributed computing projects where 
volunteers from the general public supply the necessary 
computing resources. 
 

Popular projects have successfully utilized thousands 
of distributed computers to tackle a vast range of highly 
complex, but separable problems.  One such project is 
ChessBrain, a worldwide distributed network of 
machines that plays the game of chess. 

  
2. ChessBrain and ChessBrain II 
 
The ChessBrain project was formed in 2001 to study 
distributed computing and speed-critical computation 
using publicly volunteered resources.  The game of 
chess was chosen because of the parallelizable nature of 
chess game tree analysis and because of the author’s 
interests in the subject. 
 

ChessBrain played its first game of chess using 
distributed machines in December 2002.  On January 
30th 2004, ChessBrain played a live game against top 
Danish Chess Grandmaster, Peter Heine Nielsen using 
2070 machines from over 50 different countries.  It was 
the first time in computing history that a distributed 
network of machines played a game against a top 
human opponent under tournament conditions.  The 
game resulted in a draw after 34 moves and ChessBrain 
was awarded a 2005 Guinness World Record under the 
Internet section of the Science and Technology 
division. 

 
ChessBrain is unique among volunteer computing 

projects because it requires real-time support from 
distributed machines.  We are not aware of any other 
volunteer computing project which requires real-time 
feedback.  The standard response timeframe is usually 
measured in days or weeks rather than seconds and 
minutes.  The extra complexity required in order to 
synchronize and optimize the computational resources 
in order to cope with this time-criticality make 
distributed chess a fascinating area worthy of 
considerable study. 

 
ChessBrain’s real-time requirement has driven many 

of the architectural decisions that were made 
throughout the project’s four year history. Many 
problems were encountered during the 2004 exhibition 
game against Grandmaster Nielsen.  The ChessBrain 
team has embarked on a significant rewrite of the 
underlying framework in support of a faster, more 
robust and scalable approach. 

 
The original ChessBrain system consisted of a central 

SuperNode server hosted at distributedchess.net.  
Thousands of PeerNode clients connected directly to 
the SuperNode to retrieve work units and to return them 
in real-time.   

 
A single high-powered server is typically adequate 

for a small project. However, once ChessBrain grew to 
thousands of contributors a larger more scalable 
solution was required. 

 
To address issues of both performance and 

scalability, a new design was chosen, consisting of 
clusters of SuperNodes.  In this hierarchical model, 
each SuperNode maintains its own community of 
PeerNodes which communicate directly with it, and not 
with the central ChessBrain server.   

 
This approach offers a number of tangible benefits: 

• Internet latency is reduced for machines clustered 
around a SuperNode hub. In many cases these 
machines are located in the same building or at the 
very least in the same geographical region. 



• Bandwidth requirements are greatly reduced as the 
bandwidth load is distributed among participating 
SuperNodes. 

• Communication efficiencies are realized when 
machines exists within a local LAN environment 
and within clustered environments such as Beowulf 
clusters and compute farms – the so called 
Network of Workstations (NOW) and Pile of PCs 
(POP) arrangements. 

During the past few years, we have received offers from 
computing centers which feature high speed clusters to 
host ChessBrain software.  However, the first 
ChessBrain was not designed specifically for clusters so 
there has been very little compelling reason to commit a 
cluster to the project.  During our demonstration match 
at Copenhagen in 2004, we were able to use the 200 
node BioCluster located in Copenhagen, but due to the 
nature of the communications bottlenecks, we were 
unable to take proper advantage of the computing 
power it provided.  We are addressing this limitation 
with ChessBrain II, which is specifically designed to 
harness distributed clusters. In so doing, we hope to 
localize messaging interaction between a SuperNode 
and its associated compute nodes whenever possible.   

 
There is another significant benefit which is beyond 

the scope of this paper, which we’ll touch on briefly.  
We believe that computer enthusiasts would find it 
entertaining to operate their own virtual 
supercomputers.  Specialized software that easily 
allows enthusiasts to cluster both local and distributed 
machines would appeal to an Internet subculture of 
enthusiasts who refer to themselves as DC’ers 
(Distributed Computing practitioners). Because many 
DC groups contain hundreds of members (and many 
operate more than one machine), the social aspect of 
such an arrangement should not be overlooked. 
 
3. msgCourier  
 
A message is a fundamental unit of information 
exchange between distributed resources. All volunteer 
computing projects share the concept of message 
passing. 
 

On ChessBrain II, it became clear that a more robust 
messaging infrastructure was required.  Over a year 
ago, we began work on msgCourier - an open source 
custom server for use in P2P and non-P2P distributed 
computing projects.  MsgCourier is designed to support 
distributed computing efforts where some combination 
of the following constraints are present: 
 
• When it is undesirable to host multiple server 

applications, such as a web server, message 

queuing server, database server, and or an 
application server. 

• When a server solution must support built-in 
security features which are comparable to but 
without requiring the use of SSL or SSH. 

• When the server application must provide built-in 
Peer-to-Peer functionality such as, resource and 
service discovery, self-organization, and clustering. 

• When the end-user isn't knowledgeable enough in 
the use or configuration of the applications listed in 
this section. 

• When there is a need for a light-weight, high-speed 
server application base for use within embedded, 
resource constrained, and or low-cost hardware 
platforms. 

• When the experience base of the application 
developer is limited with regard to network 
programming and thus a simple framework is 
required to build larger more complex applications. 

• When ease of deployment and near-zero 
configurations are critically important. 

• When the size of a completed application, which 
includes at least some of the functionality listed 
above, is important. 

• When a desired solution must run under Microsoft 
Windows and GNU/Linux environments and must 
be portable to other platforms. 

• When a non-propriety solution with source code 
availability is essential to ensuring maximum 
flexibility. 

 
Development on msgCourier is being driven by the 

ChessBrain II project but we believe it will be of 
generalized use outside of ChessBrain.  For example, 
we believe that the following applications are possible: 

 
• Web servers, File servers, Proxy servers, Gateway 

servers, Load Balancing servers, Message/Content 
routers. 

• P2P applications for resource sharing such as 
computation sharing, file sharing and storage. 

• Game servers and chat servers that complement 
existing web based applications. 

• Messaging Servers for Instant Messaging. 
• Batch job processing systems 
• Distributed computing solutions involving clusters. 
• Solutions which wouldn't necessarily require the 

features of a Beowulf cluster or Grid solution, but 
do require a way to distributed work load. 

• A queue/dispatch/director for work within an 
organized or ad-hoc compute farm. 

 
It is important that we point out msgCourier is not 
intended to be a replacement for specialized web and 
messaging servers.  Rather, msgCourier is intended as a 



potential stand-in component when the use of such 
systems is not feasible. 
 

While considering our needs for ChessBrain II, we 
researched a number of potential solutions including the 
Berkeley Open Infrastructure for Network Computing 
(BOINC), but have concluded that ChessBrain’s unique 
requirements necessitate the construction of a new 
underlying server technology. 
 

The single most important reason why we’ve arrived 
at this conclusion is because our plans for ChessBrain II 
promote our end users to cluster operators.  We believe 
that our user base consists of knowledgeable computer 
enthusiasts.  However, two important factors limit the 
extent of their support: 
 

• Many are computer savvy but are not networking 
specialists. 

• Many don’t have the time to invest in acquiring 
and configuring difficult to support and 
administer applications such as web, database 
servers and messaging servers. 

 
The primary task for ChessBrain II is to minimize the 
complexity of clustering local and remote machines for 
our community of supporters.  Our msgCourier server 
platform is intended to support many of our core needs. 

 
4. Beowulf clusters and compute farms 

 
With msgCourier, ChessBrain is able to communicate 

among a wide range of computing environments. In 
order to explore each environment we assembled a 
Beowulf cluster and compute farm, and have explored 
extending msgCourier with support for each unique 
environment. 
 
4.1. Early Beowulf experimentation 
 
Beowulf clusters are highly scalable clusters of 
commodity workstations running an open source 
software infrastructure.  
 

We built a small Beowulf cluster consisting of three 
nodes and later expanded it to eight nodes.  Owing to its 
unattractive appearance we affectionately refer to the 
cluster as the “Warthog.” 

 

 
Figure 1. The “Warthog” cluster. 

The three leftmost machines are the original nodes. 
Today, they currently serve as an NFS server, 
performance monitor and master node respectively. On 
the right are the eight new nodes. Each node is a basic 
machine, with the following hardware configuration: 

• Motherboard:  
PCChips M863PRO3400A+ with a 333 MHz FSB. 

• Processor: 
One Athlon XP-M 2600+ running at 1.8 GHz, 
soldered straight onto the motherboard. 

• RAM:  
One 512 MB PC3200 400MHz DDR. 

• Disk:  
One Samsung 40GB PATA drive @ 7200 RPM 
with 2MB cache. 

• Connectivity:  
10/100 Mbps integrated (onboard) Ethernet. 

The following diagram illustrates the overall network 
connectivity: 

DSL modem

suse00
(NFS server)

To the Internet

...
100BaseT 16-port

Ethernet switch

(slaves)
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(perf. mon.)

warthog (master)
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Figure 2. “Warthog” cluster connectivity. 



Each node connects directly into a 16-port 10/100 
Mbps switch. The switch supports the isolated subnet 
that is typical of Beowulf environments. In addition, the 
master node has a secondary Ethernet card connecting it 
directly to the outside world via a DSL modem. The 
master is also different in that it features a Pentium 4 
processor running at 2.4 GHz and 2 x 512GB DDR 
memory. The NFS server is a dual-processor Pentium 3 
with SCSI disks. 

 
Much of the knowledge on how to build generic 

Beowulf clusters can be found in a variety of sources. 
We relied primarily on [Swendson 2004], with the 
following distinguishing features/differences: 

1. We opted for SUSE Linux [OpenSUSE 2005]. At 
the time of writing, the Warthog runs SUSE Linux 
release 9.3. Our choice was influenced by previous 
experience with the distribution. This proved to be 
a good decision in light of the fact that OpenSUSE 
Linux installed smoothly and commissioning the 
nodes proved to be straightforward. 

2. MPICH [MPI 2005] is the message passing API we 
chose for experimentation. 

3. The master node doesn’t run a firewall; however 
the DSL modem has an embedded firewall. The 
modem only has one port opened—the one through 
which ChessBrain interaction occurs with the 
outside world. 

4. Our NFS server is not the master node. The 
rationale behind this is to restrict the NFS server’s 
responsibilities. 

5. Our slaves run a full OpenSUSE distribution with 
all the default packages; not just the network 
service package. 

6. We use GRUB as boot loader, and we have it 
MBR-resident. 

7. The NFS server boots first. Then the other nodes 
do so. When they do, they mount /mnt/beouser/ 
from the NFS server. beouser is the unix username 
under which we ran the MPI tests. The path 
/mnt/beouser/ is just a directory on the NFS server 
that holds executable files needed by the slaves. 
Every slave mounts /mnt/beouser upon startup. 

4.2. Beowulf test application 
 
The ChessBrain engine is fundamentally a sophisticated 
search engine. Intrinsically therefore, it is compute-
intensive and we sought to implement a test-bed that 
would give us insight into the Beowulf’s compute-
intensive capabilities. 
 

To that effect, we implemented a distributed prime-
number search MPI program that uses brute force to 
determine primality. We plan to implement the same 

algorithm using msgCourier, and learn from the 
comparative outcome. 

 
Our goal is not to make a case for choosing between 

an MPI and msgCourier.  We are interested in both the 
issues and the implications of choosing a particular 
approach based on ChessBrain’s needs. 

 
The MPI implementation runs with a master node 

and a minimum of 1 slave. We experimented with up to 
8 slaves. The testing proceeded as follows, using the 
simple test application of finding all prime numbers 
within a given range {1 … X}: 

1. The master starts by finding out how many slaves 
are in the node pool. 

2. The master apportions the integers by sending each 
slave a range delimited by a pair of integers, 
specifying the lower and upper bounds. For 
example if X = 84000 and there is 1 slave then that 
slave receives the pair (1, 84000). With X = 
504000 and 2 slaves, the pairs are (1, 252000) and 
(252001, 504000). 

3. Once the work is apportioned, the master waits to 
receive results from any slave. 

4. Upon receiving their work unit from the master, 
each slave loops through its range and, for each 
odd number in the range, it uses brute force to find 
out if that number has factors other than 1 and 
itself. If it doesn’t, then it is a prime. 

5. As each slave loops through its range, it stores 
every prime number it finds in an array. Upon 
completing its work unit, the slave makes an 
MPI_Send call to report back its results. 

6. The master receives arrays of prime numbers from 
all the slaves and collects them all in an array and 
eventually prints them out.  

We used X = 84000, 168000, 252000, 336000, 
420000 and 504000, and we harnessed anywhere from 
1 to 8 slaves, distributing the larger integer ranges first, 
to allow their slaves to start first. Raw results in 
seconds are tabled below: 

 
Number of slaves 

X 1 2 3 4 5 6 7 8 
84000 5 4 3 2 1 1 1 1 

168000 18 13 10 7 6 5 5 4 
252000 38 28 20 17 14 11 10 8 
336000 67 49 36 29 23 19 18 16 
420000 101 75 55 43 36 30 26 23 
504000 144 106 78 61 51 43 37 32 

Figure 3. Raw performance results. 

The chart below illustrates the timing results 
obtained. The six lines correspond to the different 
values of X used. The Y-axis represents the time taken 



to complete the search and the X-axis represents the 
number of slaves involved. 
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The method by which work was divided up among the 
slaves led to uneven loads. For example with X = 
504000 and 8 slaves, the task of slave 1 is to determine 
the primality of numbers 1 .. 63000 whilst slave 8 has 
to reckon with the range 63001 .. 504000. Slave 1 is 
bound to finish faster because the task of determining 
primality, at least in this naïve algorithm, is related to 
the size of the number to be tested. We did observe 
such an imbalance in the tests, noting that real-life 
frequently distributes uneven loads to nodes. Even in 
the first ChessBrain experiment, different compute 
nodes searched trees of varying depths. 
 

Given this caveat, we examined scenarios where 
some of the larger integers were distributed to all 
slaves. For example, with X = 504000, we 
experimented with 80 MPI processes on 8 slaves, 
dividing the integers into 80 ranges. Again we 
distributed the larger integer ranges first, thereby 
allowing those processes to start first. We observed that 
the time taken for the Warthog to complete 1 .. 504000 
dropped to 19 seconds. 

 
The time taken for one slave to determine the 

primality of integers 1 .. 504000 was 144 seconds 
whereas, with 80 MPI processes on eight slaves, the 
time taken was 19 seconds. Theoretically therefore, 
were we to serialize the eight slaves, the task would 
take 152 seconds. This prompts us to posit that the 
Warthog loses some 5.6% compute efficiency which we 
attribute to MPI communication overhead. Those 
figures are heartening and we recognize that the 

compute-intensive and easily-parallelizable nature of 
primality determination meant that our tests leant 
themselves to good results. ChessBrain displays similar 
properties and we anticipate great gain from cluster-
based parallelization. 

 
An area msgCourier differs from our prime number 

search, primarily in the data type transmission between 
master and slaves.  MPI requires the use of 
predetermined data types, while msgCourier isn’t 
concerned with that level of detail. 

 
In our tests, master and slaves exchanged arrays of 

integers. We used 32-bit integers and we are keenly 
aware that this is a good fit for the 32-bit architecture of 
our processors. To gain insight in the impact of this, we 
re-implemented and ran our test using 64-bit integers so 
that MPI_Send and MPI_Recv had to do extra work. 
Indeed we observed that whilst 8 processes on 8 slaves 
took 32 seconds to search 1 .. 504000, the same task 
now took 53 seconds when 64-bit integers were used. 

 
4.3. msgCourier 
 
msgCourier is currently designed to leverage compute 
farms which are not necessarily configured as a 
Beowulf cluster.  In this scenario, msgCourier is 
responsible for message passing in place of MPI. 
 

We’re currently exploring the potential of modifying 
msgCourier to leverage MPI when it is available on the 
target cluster. 
 
5. Conclusion 
 
This paper examines our early exploration into 
extending ChessBrain II to leverage the use of clusters.  
In particular we’re beginning to explore Beowulf 
clusters and MPI for potential speed improvements. 
 

Preliminary tests using prime number searches 
indicate that compute-intensive and easily-
parallelizable algorithms stand to gain much from 
Beowulf clusters. ChessBrain II relies on such 
algorithms. 
 

We propose the msgCourier technology as a partial 
solution to the problems faced by new volunteer 
computing initiatives, namely: 

 
• Improving the effective utilization of clustered 

resources within local networks. 
• Simplifying the creation of custom clustering 

software with minimal dependencies on the 
underlying operating system platform. 



• Devising an underlying framework (msgCourier) 
on which to build distributed computing 
solutions, such as work distribution servers, 
gateways and distributed logging facilities. 

 
We’re preparing msgCourier to harness distributed 
clusters in support of volunteer computing and Grid 
computing initiatives. 
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