
Automate backups on Linux
Secure Distributed Network Backups

Carlos Justiniano
cjus@chessbrain.net, cjus34@yahoo.com

July 8th 2004

Published in the IBM developerWorks Linux site
http://www-128.ibm.com/developerworks/linux/library/l-backup/index.html

The loss of critical data can prove devastating. Still, millions
of professionals ignore backing up their data. While
individual reasons vary, one of the most common
explanations is that performing routine backups can be a real
chore. Because machines excel at mundane and repetitive
tasks, the key to reducing the inherent drudgery and the
natural human tendency for procrastination is to automate
the backup process.

If you use Linux, you already have access to extremely
powerful tools for creating custom backup solutions. The
solutions in this article can help you perform simple to more
advanced and secure network backups using open source
tools that are part of nearly every Linux distribution.

Simple backups
This article follows a step-by-step approach that is quite
straightforward once you follow the basic steps.

Let's begin with a simple, yet powerful archive mechanism
on our way to a more advanced distributed backup solution.
Let's examine a handy script called arc, which will allow us
to create backup snapshots from a Linux shell prompt.

Listing 1. The arc shell script

#!/bin/sh
tar czvf $1.$(date +%Y%m%d%­%H%M%S).tgz $1
exit $?

The arc script accepts a single file or directory name as a
parameter and creates a compressed archive file with the
current date embedded into the resulting archive file's name.
For example, if you have a directory called beoserver, you
can invoke the arc script, passing it the beoserver directory
name to create a compressed archive such as:
beoserver.20040321-014844.tgz

The use of the date command to embed a date and timestamp
helps to organize your archived files. The date format is
Year, Month, Day, Hour, Minutes, and Seconds -- although
the use of the seconds field is perhaps a bit much. View the
man page for the date command (man date) to learn about
other options. Also, in Listing 1, we pass the -v (verbose)

option to tar. This causes tar to display all of the files it's
archiving. Remove the -v option if you'd like the backup to
proceed silently.

Listing 2. Archiving the beoserver directory

$ ls
arc beoserver
$./arc beoserver
beoserver/
beoserver/bookl.dat
beoserver/beoserver_ab_off
beoserver/beoserver_ab_on
$ ls
arc beoserver beoserver.20040321­014844.tgz

Advanced backups
This simple backup example is useful; however, it still
includes a manual backup process. The industry's best
practices recommend backing up often, onto multiple media,
and to separate geographic locations. The central idea is to
avoid relying entirely on any single storage media or single
location.

We'll tackle this challenge in our next example, where we'll
examine a fictitious distributed network, illustrated in Figure
1, which shows a system administrator with access to two
remote servers and an offsite data storage server.

Figure 1. Distributed network

The backup files on Server #1 and #2 will be securely
transmitted to the offsite storage server, and the entire
distributed backup process will occur on a regular basis
without human intervention. We'll use a set of standard tools
that are part of the Open Secure Shell tool suite (OpenSSH),
as well as the tape archiver (tar), and the cron task
scheduling service. Our overall plan will be to use cron for
scheduling, shell programming and the tar application during
the backup process, OpenSSH secure shell (ssh) encryption
for remote access, and authentication, and secure shell copy
(scp) to automate file transfers. Be sure to review each tool's
man page for additional information.

Secure remote access using public/private keys
In the context of digital security, a key is a piece of data
which is used to encrypt or decrypt other pieces of data. The
public and private key scheme is interesting because data
encrypted with a public key can only be decrypted with the
associated private key. You may freely distribute a public
key so that others can encrypt the messages they send you.
One of the reasons that public/private key schemes have
revolutionized digital security is because the sender and
receiver don't have to share a common password. Among
other things, public/private key cryptography has made e-
commerce and other secure transactions possible. In this
article, we'll create and use public and private keys to create
a highly secure distributed backup solution.

Each machine involved in the backup process must be
running the OpenSSH secure shell service (sshd) with port
22 accessible through any intermediate firewall. If you
access remote servers, then there is a good chance you're
already using secure shell.

Our goal will be to provide machines with secure access
without requiring the need to manually provide passwords.
Some people think that the easiest way to do this is to set up
password-less access: do not do this. It is not secure. Instead,
the approach we'll use in this article will take perhaps an
hour of your time, set up a system which gives all the
convenience of "passphraseless" accounts -- but is
recognized as being highly secure.

Let's begin by ensuring that OpenSSH is installed and
proceed to check its version number. At the time this article
was written, the latest OpenSSH release was version 3.8,
released on February 24, 2004. You should consider using a
recent and stable release, and at the very least use a release
which is newer than version 2.x. Visit the OpenSSH Security
page for details regarding older version-specific
vulnerabilities (see the link in Resources later in this article).
At this point in time, OpenSSH is quite stable and has proven
to be immune to many of the vulnerabilities which have been
reported for other SSH tools.

At a shell prompt, type ssh with the capital V option to check
the version number:

$ ssh ­V
OpenSSH_3.5p1, SSH protocols 1.5/2.0, OpenSSL
0x0090701f

If ssh returns a version number greater than 2.x, the machine
is in relatively good shape. However, it is recommended that
you use the latest stable releases of all software, and this is
especially important for security-related software.

Our first step is to log in to the offsite storage server machine
using the account, which will have the privilege of being
able to access servers 1 and 2 (see Figure 1).

$ ssh accountname@somedomain.com

Once logged on to the offsite storage machine, use the ssh-
keygen program to create a public/private key pair using the
-t dsa option. The -t option is required, and is used to specify
the type of encryption key we're interested in generating.
We'll use the Digital Signature Algorithm (DSA), which will
enable us to use the newer SSH2 protocol. See the ssh-
keygen man page for more details.

During the execution of ssh-keygen, you'll be prompted for
the location where the ssh keys will be stored before you're
asked for a passphrase. Simply press enter when asked where
to save the key and the ssh-keygen program will create a
hidden directory called .ssh (if one doesn't already exist)
along with two files, a public and private key file.

An interesting feature of ssh-keygen is that it will allow you
to simply press enter when prompted for a passphrase. If you
don't supply a passphrase, then ssh-keygen will generate
keys which are not encrypted! As you can imagine, this isn't
a good idea. When asked for a passphrase, make sure to enter
a reasonably long string message which contains
alphanumeric characters rather than a simple password
string.

Listing 3. Always choose a good passphrase

[offsite]:$ ssh­keygen ­t dsa
Generating public/private dsa key pair.
Enter file in which to save the key
(/home/accountname/.ssh/id_dsa):
Enter passphrase (empty for no passphrase):
(enter passphrase)
Enter same passphrase again: (enter passphrase)
Your identification has been saved in /
home/accountname/.ssh/id_dsa.
Your public key has been saved in /
home/accountname/.ssh/id_dsa.pub.
The key fingerprint is:
7e:5e:b2:f2:d4:54:58:6a:fa:6b:52:9c:da:a8:53:1b
accountname@offsite

Because the .ssh directory which ssh-keygen creates is a
hidden "dot" directory, pass the -a option to the ls command
to view the newly created directory:

[offsite]$ ls ­a
. .. .bash_logout .bash_profile .bashrc .emacs .
gtkrc .ssh

Enter the hidden .ssh directory and list the contents:

[offsite]$ cd .ssh
[offsite]$ ls ­lrt
id_dsa id_dsa.pub

We now have a private key (id_dsa) and a public key
(id_dsa.pub) in the hidden .ssh directory. You can examine
the contents of each key file using a text editor such as vi or
emacs, or simply by using the less or cat commands. You'll
notice that the contents consist of alphanumeric characters
encoded in base64.

Next, we need to copy and install the public key on servers 1
and 2. Do not use ftp. Rather, use the secure copy program to
transmit the public keys onto each of the remote machines:

Listing 4. Installing the public keys on the remote servers

[offsite]$ scp .ssh/id_dsa.pub
accountname@server1.com:offsite.pub
accountname@server1.com's password: (enter
password, not new passphrase!)
id_dsa.pub 100% |*****************************|
614 00:00

[offsite]$ scp .ssh/id_dsa.pub
accountname@server2.com:offsite.pub
accountname@server2.com's password: (enter
password, not new passphrase!)
id_dsa.pub 100% |*****************************|
614 00:00

After we install the new public keys, we'll be able to sign on
to each machine using the passphrase we specified when
creating the private and public keys. For now, log in to each
machine and append the contents of the offsite.pub file to a
file called authorized_keys, which is stored in each remote
machine's .ssh directory. We can use a text editor or simply
use the cat command to append the offsite.pub file's contents
onto the authorized_keys file:

Listing 5. Add offsite.pub to your list of authorized keys

[offsite]$ ssh accountname@server1.com
accountname@server1.com's password: (enter
password, not new passphrase!)
[server1]$ cat offsite.pub >> ./
ssh/authorized_keys

The next step involves employing a bit of extra security.
First, we change the access rights for the .ssh directory so
that only the owner has read, write, and execute privileges.

Next, we'll make sure that the authorized_keys file can only
be accessed by the owner. And finally, we'll remove the
previously uploaded offsite.pub key file, since it's no longer
required. It's important to ensure that access permissions are
properly set because the OpenSSH server may refuse to use
keys which have non-secure access rights.

Listing 6. Changing permissions with chmod

[server1]$ chmod 700 .ssh
[server1]$ chmod 600 ./ssh/authorized_keys
[server1]$ rm offsite.pub
[server1]$ exit

After completing the same process on server2, we are ready
to return to the offsite storage machine to test the new
passphrase type access. >From the offsite server you could
type the following:

[offsite]$ ssh ­v accountname@server1.com

Use the -v, or verbose flag option, to display debugging
information while verifying that your account is now able to
access the remote server using the new passphrase rather
than the original password. The debug output displays
important information which you might not otherwise see, in
addition to offering a high level view of how the
authentication process works. You won't need to specify the
-v flag on subsequent connections; but it is quite useful to do
so while testing a connection.

Automating machine access using ssh-agent
The ssh-agent program acts like a gatekeeper, securely
providing access to security keys as needed. Once ssh-agent
is started, it sits in the background and makes itself available
to other OpenSSH applications such as ssh and scp
programs. This allows the ssh program to request an already
decrypted key, rather than asking you for the private key's
secret passphrase each time it's required.

Let's take a closer look at ssh-agent. When ssh-agent runs it
outputs shell commands:

Listing 7. ssh-agent in action

[offsite]$ ssh­agent
SSH_AUTH_SOCK=/tmp/ssh­XX1O24LS/agent.14179;
export SSH_AUTH_SOCK;
SSH_AGENT_PID=14180; export SSH_AGENT_PID;
echo Agent pid 14180;

We can instruct the shell to execute the output commands
which ssh-agent displays using the shell's eval command:

[offsite]$ eval `ssh­agent`
Agent pid 14198

The eval command tells the shell to evaluate (execute) the
commands generated by the ssh-agent program. Make sure
that you specify the back-quote character (`) and not a single
quote! Once executed, the eval `ssh-agent` statement will
return the agent's process identifier. Behind the scenes, the
SSH_AUTH_SOCK and SSH_AGENT_PID shell variables
have been exported and are now available. You can view
their values by displaying them to the shell console:

[offsite]$ echo $SSH_AUTH_SOCK
/tmp/ssh­XX7bhIwq/agent.14197

The $SSH_AUTH_SOCK (short for SSH Authentication
Socket) is the location of a local socket which applications
can use to speak to ssh-agent. To ensure that the
SSH_AUTH_SOCK and SSH_AGENT_PID variables are
always registered, enter the eval `ssh-agent` statement into
your ~/.bash_profile.

ssh-agent has now become a background process which is
visible using the top and ps commands.

Now we're ready to share our passphrase with ssh-agent. To
do so, we must use a program called ssh-add, which adds
(sends) our passphrase to the running ssh-agent program.

Listing 8. ssh-add for hassle-free login

[offsite]$ ssh­add
Enter passphrase for /
home/accountname/.ssh/id_dsa: (enter passphrase)
Identity added: /home/accountname/.ssh/id_dsa
(/home/accountname/.ssh/id_dsa)

Now when we access server1, we're not prompted for a
passphrase:

[offsite]$ ssh accountname@server1.com
[server1]$ exit

If you're not convinced, try removing (kill -9) the ssh-agent
process and reconnecting to server1. This time, you'll notice
that server1 will request the passphrase for the private key
stored in the id_dsa file in the .ssh directory:

[offsite]$ kill ­9 $SSH_AGENT_PID
[offsite]$ ssh accountname@server1.com
Enter passphrase for key
'/home/accountname/.ssh/id_dsa':

Simplifying key access using keychain
So far, we've learned about several OpenSSH programs (ssh,
scp, ssh-agent and ssh-add), and we've created and installed
private and public keys to enable a secure and automated
login process. You may have realized that most of our setup
work only has to be done once. For example, the process of
creating the keys, installing them, and getting ssh-agent to
execute via a .bash_profile only has to be done once per
machine. That's the really good news.

The less than ideal news is that ssh-add must be invoked
each time we sign on to the offsite machine and ssh-agent
isn't immediately compatible with the cron scheduling
process which we'll need to automate our backups. The
reason that cron processes can't communicate with ssh-agent
is that cron jobs are executed as child processes by cron and
thus do not inherit the $SSH_AUTH_SOCK shell variable.

Fortunately, there is a solution which not only eliminates
limitations associated with ssh-agent and ssh-add, but also
allows us to use cron to automate all sorts of processes
requiring secure passwordless access to other machines. In
his 2001 three-part developerWorks series, OpenSSH key
management (see Resources for a link), Daniel Robbins
presented a shell script called keychain, which is a front-end
to ssh-add and ssh-agent and which simplifies the entire
passwordless process. Over time, the keychain script has
undergone a number of improvements and is now maintained
by Aron Griffis, with a recent 2.3.2-1 release posted on June
17, 2004.

The keychain shell script is a bit too large to list in this
article because the well-written script includes lots of error
checking, ample documentation, and a generous serving of
cross-platform code. However, keychain can be quickly
downloaded from the project's Web site (see Resources for a
link).

Once you download and install keychain, using it is
remarkably easy. Simply log in to each machine and add the
following two lines to each .bash_profile:

keychain id_dsa
. ~/.keychain/$HOSTNAME­sh

The first time you log back in to each machine, keychain will
prompt you for the passphrase. However, keychain won't ask
you to reenter the passphrase on subsequent login attempts
unless the machine has been restarted. Best of all, cron tasks
are now able to use OpenSSH commands to securely access
remote machines without requiring the interactive use of
passphrases. Now we have the best of both worlds, added
security and ease of use.

Listing 9. Initializing keychain on each machine

KeyChain 2.3.2;
http://www.gentoo.org/projects/keychain
Copyright 2002­2004 Gentoo Technologies, Inc.;
Distributed under the
GPL

* Initializing /
home/accountname/.keychain/localhost.localdomain­
sh file...
* Initializing /
home/accountname/.keychain/localhost.localdomain­
csh file...

* Starting ssh­agent
* Adding 1 key(s)...
Enter passphrase for /
home/accountname/.ssh/id_dsa: (enter passphrase)

Scripting a backup process
Our next task is to create the shell scripts, which will
perform the necessary backup operations. The goal is to
perform a complete database backup of servers 1 and 2. In
our example, each server is running the MySQL database
server and we'll use the mysqldump command-line utility to
export a few database tables to an SQL import file.

Listing 10. The dbbackup.sh shell script for server 1

#!/bin/sh

change into the backup_agent directory where
data files are stored.
cd /home/backup_agent

use mysqldump utility to export the sites
database tables
mysqldump ­u sitedb ­pG0oDP@sswrd ­­add­drop­
table sitedb ­­tables
tbl_ccode tbl_machine tbl_session tbl_stats >
userdb.sql

compress and archive
tar czf userdb.tgz userdb.sql

On server 2, we'll place a similar script which backs up the
unique tables present in the site's database. Each script is
flagged as executable using:

[server1]:$ chmod +x dbbackup.sh

With a dbbackup.sh file on servers 1 and 2, we return to the
offsite data server, where we'll create a shell script to invoke
each remote dbbackup.sh script prior to initiating a transfer
of the compressed (.tgz) data files.

Listing 11. backup_remote_servers.sh shell script for use on
the offsite data server

#!/bin/sh

use ssh to remotely execute the dbbackup.sh
script on server 1
/usr/bin/ssh backup_agent@server1.com
"/home/backup_agent/dbbackup.sh"

use scp to securely copy the newly archived
userdb.tgz file
from server 1. Note the use of the date
command to timestamp
the file on the offsite data server.
/usr/bin/scp
backup_agent@server1.com:/home/backup_agent/userd
b.tgz
/home/backups/userdb­$(date +%Y%m%d­%H%M%S).tgz

execute dbbackup.sh on server 2
/usr/bin/ssh backup_agent@server2.com
"/home/backup_agent/dbbackup.sh"

use scp to transfer transdb.tgz to offsite
server.
/usr/bin/scp
backup_agent@server2.com:/home/backup_agent/trans
db.tgz
/home/backups/transdb­$(date +%Y%m%d­%H%M%S).tgz

The backup_remote_servers.sh shell script uses the ssh
command to execute a script on the remote servers. Because
we've set up passwordless access, the ssh command is able to
execute commands on servers 1 and 2 remotely from the
offsite server. The entire authentication process is now
handled automatically, thanks to keychain.

Scheduling
Our next and final task involves scheduling the execution of
the backup_remote_servers.sh shell script on the offsite data
storage server. We'll add two entries to the cron scheduling
server to request execution of the backup script twice per
day, at 3:34 am and again at 8:34 pm. On the offsite server
invoke the crontab program with the edit (-e) option.

[offsite]:$ crontab ­e

The crontab invokes the default editor, as specified using the
VISUAL or EDITOR shell environment variables. Next,
type two entries and save and close the file.

Listing 12. Crontab entries on the offsite server

34 3 * * * /home/backups/remote_db_backup.sh
34 20 * * * /home/backups/remote_db_backup.sh

A crontab line contains two main sections, a time schedule
section followed by a command section. The time schedule is
divided into fields for specifying when a command should be
executed:

Listing 13. Crontab format

+­­­­ minute
| +­­­­­ hour
| | +­­­­­­ day of the month
| | | +­­­­­­ month
| | | | +­­­­ day of the week
| | | | | +­­ command to execute
| | | | | |
34 3 * * * /home/backups/remote_db_backup.sh

Verifying your backups
You should routinely check your backups to ensure that the
process is working correctly. Automating processes can
remove unnecessary drudgery, but should never be a way of
escaping due diligence. If your data is worth backing up,
then it's also worth spot checking from time to time.

Consider adding a cron job to remind yourself to check your
backups at least once per month. In addition, it's a good idea
to change security keys every once in a while, and you can
schedule a cron job to remind you of that as well.

Additional security precautions
For added security, consider installing and configuring an
Intrusion Detection System (IDS), such as Snort, on each
machine. Presumably, an IDS will notify you when an
intrusion is underway or has recently occurred. With an IDS
in place, you'll be able to add other levels of security such as
digitally signing and encrypting your backups.

Popular open source tools such as GNU Privacy Guard
(GnuPG), OpenSSL and ncrypt enable securing archive files
via shell scripts, but doing so without the extra level of
shielding that an IDS provides isn't recommended (see
Resources for more information on Snort).

Conclusion
This article has shown you how to allow your scripts to
execute on remote servers and how to perform secure and
automated file transfers. I hope you'll feel inspired to start
thinking about protecting your own valuable data and
building new solutions using open source tools like
OpenSSH and Snort.

